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• Weakly Interacting Massive Particle (WIMP) is one of the most 
popular dark matter candidates in particle physics.
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Dark Matter Searching

• The interaction between WIMP and the SM particles makes it 
detectable by satellites (indirect detection), underground detectors 
(direct detection), and colliders. 
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effective theoryFigure 9: The 90% CL lower limits on M∗ for different masses of χ. Observed and expected limits includ-

ing all but the theoretical signal uncertainties are shown as dashed black and red solid lines, respectively.

The grey and blue bands around the expected limit are the ±1 and 2σ variation expected from statistical

fluctuations and experimental systematic uncertainties on SM and signal processes. The impact of the

theoretical uncertainties is shown by the thin red dotted ±1σ limit lines around the observed limit. The

M∗ values at which WIMPs of a given mass would result in the required relic abundance are shown as

rising green lines (taken from [22]), assuming annihilation in the early universe proceeded exclusively

via the given operator. The shaded light-grey regions in the bottom right corners indicate where the ef-

fective field theory approach breaks down [22]. The plots are based on the best expected limits, which

correspond to SR3.
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Dark Matter Searching

• Effective operator method: model independent, less free parameters.

Λ
p

p

χ

χ

CAB

⇥n
�̄�A�q̄�Bq

in the effective theory. Other UV completions, such as a
light neutral mediator, can lead to much weaker collider
cross sections [9], since far above the mediator mass the
rate will fall with jet transverse energy as 1=P2

t ; whereas, in
the effective theory the partonic reaction is flat with jet Pt,
scaling as 1=M2

!. Thus, it should be borne in mind that
our limits strictly speaking only apply when all mediator
masses are much larger than the typical energy of the
reaction, and in the absence of a picture of the UV theory,
it is hard to know whether the bounds are over- or under-
estimated when the effective theory description does not
strictly apply.

For a given WIMP mass, there is a lower bound on M!
such that one can imagine any weakly coupled UV com-
pletion. Since the operators mediate interactions with
(at least) two colored SM fields coupled to two WIMPs,
the simplest tree level UV completions have a single
mediator particle and two interactions. The mapping to
M! from the UV parameters thus involves an expression
such as M! "M=

ffiffiffiffiffiffiffiffiffiffi
g1g2

p
where M is the mass of the

exchanged particle, and g1 and g2 are couplings. Since
an effective theory description requires M> 2m!, and a
perturbative theory g1g2 & ð4"Þ2, a weakly coupled UV
completion requires m! & 2"M!, beyond which the

UV completion becomes nonperturbative. In determining
bounds, since there is no imaginable perturbative UV
picture for m! & 2"M!, we cut off the bounded regions

outside of this region of validity. Furthermore, for the
effective theory to make sense, the mediator mass has to
be larger than energy transfer through quarks at the collider
environment. The limit, in which the effective theory
breaks down, highly depends on the details of relevant
patron energy and its distribution. Since M & 4"M! for
the perturbative UV completion, our bounds are valid when
the characteristic energy transfer is smaller than 4"M!.
The detailed analysis of this limit is beyond the scope of
this work, we will leave it for the future investigation.

The coefficients of the operators are chosen to simplify
comparisons to direct detection experiments. For quark
bilinears, the appropriate matrix elements (at low momen-
tum transfer) are hNjmq !qqjNi and hNj !q#$qjNi which
contribute to spin-independent scattering, hNj !q#$#5qjNi,
which contributes to spin-dependent scattering, and
hNj !q%$&qjNi, which couples to the magnetic moment of
the nucleon. For the gluon operators, the relevant matrix
element is hNj'sGGjNi. The scalar (and pseudoscalar)
quark bilinears are normalized by mq, which together
with our choice of universal vector-type couplings has
the added feature of mitigating contributions to flavor
changing processes from these operators, through the
framework of minimal flavor violation [40]. For the gluon
field strength operators, we normalize by a factor 's,
which both anticipates their origin as loop processes and
captures the dominant renormalization group evolution.
The complete list of leading operators is given in Table I.

The coefficients of these operators have been scaled by
appropriate powers of M! (the value of which can be in
principle different for each operator) to give the correct
over-all dimension in the action.

III. COLLIDER CONSTRAINTS

A. Overview

We can constrainM! for each operator in the table above
by considering the pair production of WIMPs at a hadron
collider:

p !pðppÞ ! !!þ X: (2)

Since the WIMPs escape undetected, this leads to events
with missing transverse energy, recoiling against addi-
tional hadronic radiation present in the reaction.
The most significant standard model backgrounds to this

process are events where a Z boson decays into neutrinos,
together with the associated production of jets. This back-
ground is irreducible. There are also backgrounds from
events where a particle is either missed or has a mismeas-
ured energy. The most important of these comes from
events producing W þ jets, where the charged lepton
from the W-decay is missed. Other backgrounds such as
QCD multijet production (with the missing energy the

TABLE I. Operators coupling WIMPs to SM particles. The
operator names beginning with D, C, R apply to WIMPS that are
Dirac fermions, complex scalars or real scalars, respectively.

Name Operator Coefficient

D1 !!! !qq mq=M
3
!

D2 !!#5! !qq imq=M
3
!

D3 !!! !q#5q imq=M
3
!

D4 !!#5! !q#5q mq=M
3
!

D5 !!#$! !q#$q 1=M2
!

D6 !!#$#5! !q#$q 1=M2
!

D7 !!#$! !q#$#
5q 1=M2

!
D8 !!#$#5! !q#$#

5q 1=M2
!

D9 !!%$&! !q%$&q 1=M2
!

D10 !!%$&#
5! !q%'(q i=M2

!
D11 !!!G$&G

$& 's=4M
3
!

D12 !!#5!G$&G
$& i's=4M

3
!

D13 !!!G$&
~G$& i's=4M

3
!

D14 !!#5!G$&
~G$& 's=4M

3
!

C1 !y! !qq mq=M
2
!

C2 !y! !q#5q imq=M
2
!

C3 !y@$! !q#$q 1=M2
!

C4 !y@$! !q#$#5q 1=M2
!

C5 !y!G$&G
$& 's=4M

2
!

C6 !y!G$&
~G$& i's=4M

2
!

R1 !2 !qq mq=2M
2
!

R2 !2 !q#5q imq=2M
2
!

R3 !2G$&G
$& 's=8M

2
!

R4 !2G$&
~G$& i's=8M

2
!

CONSTRAINTS ON DARK MATTER FROM COLLIDERS PHYSICAL REVIEW D 82, 116010 (2010)

116010-3

J Goodman, et al., PRD82 116010(2010)
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12 7 Interpretation

Table 10: ADD Model observed and expected limits on MD in TeV/c2 as a function of � at LO
and NLO, with K-factors of 1.5 for � = 2,3 and 1.4 for � = 4,5,6.

LO NLO
� Exp. Limit Obs. Limit Exp. Limit Obs. Limit
2 5.12 5.10 5.70 5.67
3 3.96 3.94 4.31 4.29
4 3.46 3.44 3.72 3.71
5 3.11 3.10 3.32 3.31
6 2.95 2.94 3.13 3.12

The limits on ⇥ as a function of the DM mass for the vector interaction and the axial-vector
interaction are shown in Figure 6, together with a comparison with limits from the previous
CMS analysis using 5 fb�1 at 7 TeV. The observed and expected limits at the 90% CL on the
DM-nucleon scattering cross section for the vector, axial-vector and scalar operators are shown
in Tables 11, 12, 13 and Figures 7 and 8.

Also considered is the case in which the mediator is light enough to be accessible to the LHC.
Figure 9 shows the observed limits on ⇥ as a function of the mass of the mediator, assuming
vector interactions and a dark matter mass of 50 GeV/c2 and 500 GeV/c2. The width (�) of the
mediator is varied between M/3 and M/8⇤ [13]. It shows the resonant enhancement in the
production cross section once the mass of the mediator is within the kinematic range and can
be produced on-shell. At large mediator mass, the limits on ⇥ approximate to those obtained
in the effective theory framework [13].
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Figure 6: Limits on the contact interaction scale ⇥ as a function of the DM mass for the current
analysis using 19.5 fb�1 of 8 TeV data. Also shown is the result from the previous analysis
using 5 fb�1 of 7 TeV data.

The results can also be interpreted in the context of Unparticle production. Shown in Figure 10
are the expected and observed 95% C.L limits on the cross-sections for S = 0 Unparticles with
dU = 1.5, 1.6, 1.7, 1.8 and 1.9 as a function of ⇥U for a fixed coupling constant ⇥ = 1. The
observed 95% C.L limit ⇥U for these values of dU is shown in Table 14. This can be compared
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Dark Matter Searching at the LHC

• Effective operator method: model independent, less free parameters.
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• The cutoff scale ~ hundreds GeV. 

• The typical energy of the jets pass cut ~ hundreds GeV. 

• The mass of dark matter ~ hundreds GeV. 

• Effective energy of c.m.s ~ TeV.
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Table 10: ADD Model observed and expected limits on MD in TeV/c2 as a function of � at LO
and NLO, with K-factors of 1.5 for � = 2,3 and 1.4 for � = 4,5,6.

LO NLO
� Exp. Limit Obs. Limit Exp. Limit Obs. Limit
2 5.12 5.10 5.70 5.67
3 3.96 3.94 4.31 4.29
4 3.46 3.44 3.72 3.71
5 3.11 3.10 3.32 3.31
6 2.95 2.94 3.13 3.12

The limits on ⇥ as a function of the DM mass for the vector interaction and the axial-vector
interaction are shown in Figure 6, together with a comparison with limits from the previous
CMS analysis using 5 fb�1 at 7 TeV. The observed and expected limits at the 90% CL on the
DM-nucleon scattering cross section for the vector, axial-vector and scalar operators are shown
in Tables 11, 12, 13 and Figures 7 and 8.

Also considered is the case in which the mediator is light enough to be accessible to the LHC.
Figure 9 shows the observed limits on ⇥ as a function of the mass of the mediator, assuming
vector interactions and a dark matter mass of 50 GeV/c2 and 500 GeV/c2. The width (�) of the
mediator is varied between M/3 and M/8⇤ [13]. It shows the resonant enhancement in the
production cross section once the mass of the mediator is within the kinematic range and can
be produced on-shell. At large mediator mass, the limits on ⇥ approximate to those obtained
in the effective theory framework [13].
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The limits on ⇥ as a function of the DM mass for the vector interaction and the axial-vector
interaction are shown in Figure 6, together with a comparison with limits from the previous
CMS analysis using 5 fb�1 at 7 TeV. The observed and expected limits at the 90% CL on the
DM-nucleon scattering cross section for the vector, axial-vector and scalar operators are shown
in Tables 11, 12, 13 and Figures 7 and 8.

Also considered is the case in which the mediator is light enough to be accessible to the LHC.
Figure 9 shows the observed limits on ⇥ as a function of the mass of the mediator, assuming
vector interactions and a dark matter mass of 50 GeV/c2 and 500 GeV/c2. The width (�) of the
mediator is varied between M/3 and M/8⇤ [13]. It shows the resonant enhancement in the
production cross section once the mass of the mediator is within the kinematic range and can
be produced on-shell. At large mediator mass, the limits on ⇥ approximate to those obtained
in the effective theory framework [13].
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observed 95% C.L limit ⇥U for these values of dU is shown in Table 14. This can be compared
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DM with t-channel mediator

• A simple step beyond the EFT. 

• Adding a mediator to reduce the dimension of the effective operators 
in the theory to be smaller than 5.
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DM with t-channel mediator

• The effective Lagrangian of a simple t-channel mediator theory can be 
written as 

!

• Generally, there are strong constraints from flavor physics.

L� = �q⇤̄⇥
⇤q + h.c.

CSM ⇠ g42 |VCKM|2

16⇡2m2
W

, CNP ⇠ g2

⇤2
, ) ⇤ ⇠ 4⇡v

|VCKM| ⇠ 100TeV

• Minimal Flavor Violation scenario (MFV). 

• The SM Yukawa interaction is the unique source of the flavor changing.  

• Other interactions (including the new interaction from TeV new physics) 
should be invariant under flavor symmetry group

Gf ⌘SU(3)QL ⌦ SU(3)UR ⌦ SU(3)DR ⌦ SU(3)LL ⌦ SU(3)ER

⌦ U(1)B ⌦ U(1)L ⌦ U(1)Y ⌦ U(1)PQ ⌦ U(1)ER

G. D’Ambrosio et al. Nucl Phys B 645 (2002) 155-187



DM with t-channel mediator

• The effective Lagrangian of a simple t-channel mediator theory can be 
written as 

!

!

• The quarks in the effective Lagrangian could be right-handed or left-
handed. In the MFV scenario, 

L� = �q⇤̄⇥
⇤q + h.c.
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FIG. 2: Diagrams for monojet+6 ET processes at the LHC in
the t-channel mediator scenario. (a1,a2) Initial state gluon-
split processes; (b1,b2) initial state gluon-emission processes;
(c) gluon-emission from the t�channel mediator; (d1-d4) me-
diator direct production processes.
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FIG. 3: Diagrams for mediator pair production processes
at the LHC, which leads to di-jet + 6 ET signal. (a1-a4) Dia-
grams from purely QCD interaction; (b) Diagram from the t-
channel DM exchanging; (c1-c4) Diagrams from the t-channel
Majorana dark matter exchanging.

This paper is organized as follows. In Section II, we de-
scribe the scenario studied in this paper. In Section III,
we discuss leading direct detection channels. In Sec-
tion IV, we present the LHC reach. In Section V, we
combine the reaches of LHC and direct detection, and
compare with the requirement from thermal relic abun-
dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-
actions of the form

L⇥ = �q⌅̄⇤
�q + h.c. , (1)

where q, ⌅ and ⇤ are the quark field, DM field and the
mediator, respectively. For fermionic (scalar) dark mat-
ter, the mediator ⇤ would be a scalar (fermion). The
mediator ⇤ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral
current which are strongly constrained by flavor exper-
iments. However, these constraints can be avoided by
imposing the minimal flavor violation (MFV) structure
to the Yukawa couplings [24]. In the quark sector, with-
out turning on the Yukawa couplings, the SM Lagrangian
contains a U(3)Q�U(3)u�U(3)d flavor symmetry. Now,
for simplicity, let’s first assume that ⌅ is a singlet of the
flavor group. Then, to make L⇥ invariant, the simplest
choice is to make ⇤ to be the 3-representation of one
of the three U(3) flavor groups. Therefore, in general,
Eq. (1) can be written as

L⇥ = �Q⌅̄PLQ⇤�
Q + �u⌅̄PRu⇤

�
u + �d⌅̄PRd⇤

�
d

+
�(1)
Qu⌅̄H⇤�

QYuPRu

�
+

�(1)
Qd⌅̄H̃⇤�

QYdPRd

�

+
�(2)
QuQ̄HYu⇤uPR⌅

�
+

�(2)
QdQ̄H̃Yd⇤dPR⌅

�
+h.c. , (2)

where H is the Higgs field and H̃ = i⇥2H�, Yu and Yd

are the two Yukawa couplings. For the monojet+ ⇤ ET
processes, the parton level processes are shown in Fig. 2,
where we can see that the at least one quark or anti-quark
initial state is needed. Therefore, all the terms propor-
tional to Yu or Yd are in general suppressed by the small
masses of the quarks in first two generations. Therefore,
in the case that ⌅ is a SU(2) singlet, to study the generic
feature of monojet+ ⇤ ET constraint on the “t-channel”
completion of DM models, we can neglect the terms pro-
portional to the Yukawa couplings. Furthermore, the sig-
natures in collider or direct detection experiments are not
sensitive to the chirality of the quarks unless �Q,u,d are
tuned to have some special relations. Therefore, in this
work, in the case that ⌅ is a SM singlet, we will only keep
the �u and �d terms and assume �u = �d ⇥ �. To sim-
plify our presentation, we also assume that the ⇤u and
⇤d are degenerate and M�u = M�d ⇥ M�. Then, the
Lagrangian can be simplified as

L⇥ = �⌅̄LqR⇤
� + h.c. . (3)

For simplicity, we will focus on the case in which only
right-handed quarks are coupled. For the coupling with
left handed quarks, minimally, either the mediator or the
DM needs to be in a SU(2)L doublet. There could be
additional signals if DM is part of a larger multiplet.
However, we will limit ourselves to the simpler case of
singlet DM for this paper.

We consider the case in which the all the quark flavors
are coupled. For light mediator, this immediately raises
the concern of violating stringent flavor constraints. The
best way to satisfy such constraints is probably to intro-
duce either the DM or the mediator (or both) as part of
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This paper is organized as follows. In Section II, we de-
scribe the scenario studied in this paper. In Section III,
we discuss leading direct detection channels. In Sec-
tion IV, we present the LHC reach. In Section V, we
combine the reaches of LHC and direct detection, and
compare with the requirement from thermal relic abun-
dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-
actions of the form

L⇥ = �q⌅̄⇤
�q + h.c. , (1)

where q, ⌅ and ⇤ are the quark field, DM field and the
mediator, respectively. For fermionic (scalar) dark mat-
ter, the mediator ⇤ would be a scalar (fermion). The
mediator ⇤ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral
current which are strongly constrained by flavor exper-
iments. However, these constraints can be avoided by
imposing the minimal flavor violation (MFV) structure
to the Yukawa couplings [24]. In the quark sector, with-
out turning on the Yukawa couplings, the SM Lagrangian
contains a U(3)Q�U(3)u�U(3)d flavor symmetry. Now,
for simplicity, let’s first assume that ⌅ is a singlet of the
flavor group. Then, to make L⇥ invariant, the simplest
choice is to make ⇤ to be the 3-representation of one
of the three U(3) flavor groups. Therefore, in general,
Eq. (1) can be written as
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where H is the Higgs field and H̃ = i⇥2H�, Yu and Yd

are the two Yukawa couplings. For the monojet+ ⇤ ET
processes, the parton level processes are shown in Fig. 2,
where we can see that the at least one quark or anti-quark
initial state is needed. Therefore, all the terms propor-
tional to Yu or Yd are in general suppressed by the small
masses of the quarks in first two generations. Therefore,
in the case that ⌅ is a SU(2) singlet, to study the generic
feature of monojet+ ⇤ ET constraint on the “t-channel”
completion of DM models, we can neglect the terms pro-
portional to the Yukawa couplings. Furthermore, the sig-
natures in collider or direct detection experiments are not
sensitive to the chirality of the quarks unless �Q,u,d are
tuned to have some special relations. Therefore, in this
work, in the case that ⌅ is a SM singlet, we will only keep
the �u and �d terms and assume �u = �d ⇥ �. To sim-
plify our presentation, we also assume that the ⇤u and
⇤d are degenerate and M�u = M�d ⇥ M�. Then, the
Lagrangian can be simplified as

L⇥ = �⌅̄LqR⇤
� + h.c. . (3)

For simplicity, we will focus on the case in which only
right-handed quarks are coupled. For the coupling with
left handed quarks, minimally, either the mediator or the
DM needs to be in a SU(2)L doublet. There could be
additional signals if DM is part of a larger multiplet.
However, we will limit ourselves to the simpler case of
singlet DM for this paper.

We consider the case in which the all the quark flavors
are coupled. For light mediator, this immediately raises
the concern of violating stringent flavor constraints. The
best way to satisfy such constraints is probably to intro-
duce either the DM or the mediator (or both) as part of



Direct detection

• Direct detection 

!

• The direct detection cross section from this effective operator has 
been well studied. 

• There are other operators induced by the t-channel mediator! 

!

!

• Those operators are dim-7 and loop-induced from the t-channel 
mediator. 

• The chiral symmetry enforces the Wilson coefficients to be 
proportional to the mass of the WIMP.
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LHC phenomenology I: monojet

• Dark matter production process: monojet + missing ET.2
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This paper is organized as follows. In Section II, we de-
scribe the scenario studied in this paper. In Section III,
we discuss leading direct detection channels. In Sec-
tion IV, we present the LHC reach. In Section V, we
combine the reaches of LHC and direct detection, and
compare with the requirement from thermal relic abun-
dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-
actions of the form

L⇥ = �q⌅̄⇤
�q + h.c. , (1)

where q, ⌅ and ⇤ are the quark field, DM field and the
mediator, respectively. For fermionic (scalar) dark mat-
ter, the mediator ⇤ would be a scalar (fermion). The
mediator ⇤ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral
current which are strongly constrained by flavor exper-
iments. However, these constraints can be avoided by
imposing the minimal flavor violation (MFV) structure
to the Yukawa couplings [24]. In the quark sector, with-
out turning on the Yukawa couplings, the SM Lagrangian
contains a U(3)Q�U(3)u�U(3)d flavor symmetry. Now,
for simplicity, let’s first assume that ⌅ is a singlet of the
flavor group. Then, to make L⇥ invariant, the simplest
choice is to make ⇤ to be the 3-representation of one
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where H is the Higgs field and H̃ = i⇥2H�, Yu and Yd

are the two Yukawa couplings. For the monojet+ ⇤ ET
processes, the parton level processes are shown in Fig. 2,
where we can see that the at least one quark or anti-quark
initial state is needed. Therefore, all the terms propor-
tional to Yu or Yd are in general suppressed by the small
masses of the quarks in first two generations. Therefore,
in the case that ⌅ is a SU(2) singlet, to study the generic
feature of monojet+ ⇤ ET constraint on the “t-channel”
completion of DM models, we can neglect the terms pro-
portional to the Yukawa couplings. Furthermore, the sig-
natures in collider or direct detection experiments are not
sensitive to the chirality of the quarks unless �Q,u,d are
tuned to have some special relations. Therefore, in this
work, in the case that ⌅ is a SM singlet, we will only keep
the �u and �d terms and assume �u = �d ⇥ �. To sim-
plify our presentation, we also assume that the ⇤u and
⇤d are degenerate and M�u = M�d ⇥ M�. Then, the
Lagrangian can be simplified as

L⇥ = �⌅̄LqR⇤
� + h.c. . (3)

For simplicity, we will focus on the case in which only
right-handed quarks are coupled. For the coupling with
left handed quarks, minimally, either the mediator or the
DM needs to be in a SU(2)L doublet. There could be
additional signals if DM is part of a larger multiplet.
However, we will limit ourselves to the simpler case of
singlet DM for this paper.

We consider the case in which the all the quark flavors
are coupled. For light mediator, this immediately raises
the concern of violating stringent flavor constraints. The
best way to satisfy such constraints is probably to intro-
duce either the DM or the mediator (or both) as part of
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diator direct production processes.
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FIG. 3: Diagrams for mediator pair production processes
at the LHC, which leads to di-jet + 6 ET signal. (a1-a4) Dia-
grams from purely QCD interaction; (b) Diagram from the t-
channel DM exchanging; (c1-c4) Diagrams from the t-channel
Majorana dark matter exchanging.

This paper is organized as follows. In Section II, we de-
scribe the scenario studied in this paper. In Section III,
we discuss leading direct detection channels. In Sec-
tion IV, we present the LHC reach. In Section V, we
combine the reaches of LHC and direct detection, and
compare with the requirement from thermal relic abun-
dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-
actions of the form

L⇥ = �q⌅̄⇤
�q + h.c. , (1)

where q, ⌅ and ⇤ are the quark field, DM field and the
mediator, respectively. For fermionic (scalar) dark mat-
ter, the mediator ⇤ would be a scalar (fermion). The
mediator ⇤ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral
current which are strongly constrained by flavor exper-
iments. However, these constraints can be avoided by
imposing the minimal flavor violation (MFV) structure
to the Yukawa couplings [24]. In the quark sector, with-
out turning on the Yukawa couplings, the SM Lagrangian
contains a U(3)Q�U(3)u�U(3)d flavor symmetry. Now,
for simplicity, let’s first assume that ⌅ is a singlet of the
flavor group. Then, to make L⇥ invariant, the simplest
choice is to make ⇤ to be the 3-representation of one
of the three U(3) flavor groups. Therefore, in general,
Eq. (1) can be written as

L⇥ = �Q⌅̄PLQ⇤�
Q + �u⌅̄PRu⇤

�
u + �d⌅̄PRd⇤
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QdQ̄H̃Yd⇤dPR⌅

�
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where H is the Higgs field and H̃ = i⇥2H�, Yu and Yd

are the two Yukawa couplings. For the monojet+ ⇤ ET
processes, the parton level processes are shown in Fig. 2,
where we can see that the at least one quark or anti-quark
initial state is needed. Therefore, all the terms propor-
tional to Yu or Yd are in general suppressed by the small
masses of the quarks in first two generations. Therefore,
in the case that ⌅ is a SU(2) singlet, to study the generic
feature of monojet+ ⇤ ET constraint on the “t-channel”
completion of DM models, we can neglect the terms pro-
portional to the Yukawa couplings. Furthermore, the sig-
natures in collider or direct detection experiments are not
sensitive to the chirality of the quarks unless �Q,u,d are
tuned to have some special relations. Therefore, in this
work, in the case that ⌅ is a SM singlet, we will only keep
the �u and �d terms and assume �u = �d ⇥ �. To sim-
plify our presentation, we also assume that the ⇤u and
⇤d are degenerate and M�u = M�d ⇥ M�. Then, the
Lagrangian can be simplified as

L⇥ = �⌅̄LqR⇤
� + h.c. . (3)

For simplicity, we will focus on the case in which only
right-handed quarks are coupled. For the coupling with
left handed quarks, minimally, either the mediator or the
DM needs to be in a SU(2)L doublet. There could be
additional signals if DM is part of a larger multiplet.
However, we will limit ourselves to the simpler case of
singlet DM for this paper.

We consider the case in which the all the quark flavors
are coupled. For light mediator, this immediately raises
the concern of violating stringent flavor constraints. The
best way to satisfy such constraints is probably to intro-
duce either the DM or the mediator (or both) as part of
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grams from purely QCD interaction; (b) Diagram from the t-
channel DM exchanging; (c1-c4) Diagrams from the t-channel
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This paper is organized as follows. In Section II, we de-
scribe the scenario studied in this paper. In Section III,
we discuss leading direct detection channels. In Sec-
tion IV, we present the LHC reach. In Section V, we
combine the reaches of LHC and direct detection, and
compare with the requirement from thermal relic abun-
dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-
actions of the form

L⇥ = �q⌅̄⇤
�q + h.c. , (1)

where q, ⌅ and ⇤ are the quark field, DM field and the
mediator, respectively. For fermionic (scalar) dark mat-
ter, the mediator ⇤ would be a scalar (fermion). The
mediator ⇤ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral
current which are strongly constrained by flavor exper-
iments. However, these constraints can be avoided by
imposing the minimal flavor violation (MFV) structure
to the Yukawa couplings [24]. In the quark sector, with-
out turning on the Yukawa couplings, the SM Lagrangian
contains a U(3)Q�U(3)u�U(3)d flavor symmetry. Now,
for simplicity, let’s first assume that ⌅ is a singlet of the
flavor group. Then, to make L⇥ invariant, the simplest
choice is to make ⇤ to be the 3-representation of one
of the three U(3) flavor groups. Therefore, in general,
Eq. (1) can be written as

L⇥ = �Q⌅̄PLQ⇤�
Q + �u⌅̄PRu⇤

�
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where H is the Higgs field and H̃ = i⇥2H�, Yu and Yd

are the two Yukawa couplings. For the monojet+ ⇤ ET
processes, the parton level processes are shown in Fig. 2,
where we can see that the at least one quark or anti-quark
initial state is needed. Therefore, all the terms propor-
tional to Yu or Yd are in general suppressed by the small
masses of the quarks in first two generations. Therefore,
in the case that ⌅ is a SU(2) singlet, to study the generic
feature of monojet+ ⇤ ET constraint on the “t-channel”
completion of DM models, we can neglect the terms pro-
portional to the Yukawa couplings. Furthermore, the sig-
natures in collider or direct detection experiments are not
sensitive to the chirality of the quarks unless �Q,u,d are
tuned to have some special relations. Therefore, in this
work, in the case that ⌅ is a SM singlet, we will only keep
the �u and �d terms and assume �u = �d ⇥ �. To sim-
plify our presentation, we also assume that the ⇤u and
⇤d are degenerate and M�u = M�d ⇥ M�. Then, the
Lagrangian can be simplified as

L⇥ = �⌅̄LqR⇤
� + h.c. . (3)

For simplicity, we will focus on the case in which only
right-handed quarks are coupled. For the coupling with
left handed quarks, minimally, either the mediator or the
DM needs to be in a SU(2)L doublet. There could be
additional signals if DM is part of a larger multiplet.
However, we will limit ourselves to the simpler case of
singlet DM for this paper.

We consider the case in which the all the quark flavors
are coupled. For light mediator, this immediately raises
the concern of violating stringent flavor constraints. The
best way to satisfy such constraints is probably to intro-
duce either the DM or the mediator (or both) as part of
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• New contributions: 

(c) ---- from dim-7 operator 

- Higher suppressed by the mediator mass  

- No logarithm enhancement as the initial state QCD jet 

(d1-d4) ---- WIMP-mediator associated production 

- Two-body phase space enhancement 

- High pT jet from heavy mediator decay

O8 = � igS�2

M4
�

T a
ijA

a
µ (⇥̄PRqj)

⇥⇤
⇤ µ (q̄iPL⇥)

• The most recent monojet+missing ET constraint from the LHC is from 
CMS collaboration with 19.5 fb-1 dataset from 8 TeV proton-proton 
collision.
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• We use MadGraph5/MadEvent generate parton level event, shower it 
using PYTHIA6.4 and simulate the detector effects using PGS4 with 
anti-kT jet algorithm with a distance parameter of 0.5. 

• Cuts: 

At least one central jet 

At most two jets s.t.  

No isolated electron with                                                   or 

No isolated muon with 

  

For events with a second jet, 

pT > 110 GeV, |�| < 2.4

pT > 30 GeV, |�| < 4.5

pT > 10 GeV, |�| < 1.44

pT > 10 GeV, |�| < 2.1

1.56 < |�| < 2.5

6 ET > 120 GeV

��j1j2 < 2.5

• Events which pass those cuts are separated in seven signal regions 
according to the missing ET in the event.

CMS PAS EXO-12-048



• The mediator is colored particle which can be produced by purely 
QCD process. They also contribute to the “monojet” signal due to the 
cut.
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diator direct production processes.
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FIG. 3: Diagrams for mediator pair production processes
at the LHC, which leads to di-jet + 6 ET signal. (a1-a4) Dia-
grams from purely QCD interaction; (b) Diagram from the t-
channel DM exchanging; (c1-c4) Diagrams from the t-channel
Majorana dark matter exchanging.

This paper is organized as follows. In Section II, we de-
scribe the scenario studied in this paper. In Section III,
we discuss leading direct detection channels. In Sec-
tion IV, we present the LHC reach. In Section V, we
combine the reaches of LHC and direct detection, and
compare with the requirement from thermal relic abun-
dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-
actions of the form

L⇥ = �q⌅̄⇤
�q + h.c. , (1)

where q, ⌅ and ⇤ are the quark field, DM field and the
mediator, respectively. For fermionic (scalar) dark mat-
ter, the mediator ⇤ would be a scalar (fermion). The
mediator ⇤ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral
current which are strongly constrained by flavor exper-
iments. However, these constraints can be avoided by
imposing the minimal flavor violation (MFV) structure
to the Yukawa couplings [24]. In the quark sector, with-
out turning on the Yukawa couplings, the SM Lagrangian
contains a U(3)Q�U(3)u�U(3)d flavor symmetry. Now,
for simplicity, let’s first assume that ⌅ is a singlet of the
flavor group. Then, to make L⇥ invariant, the simplest
choice is to make ⇤ to be the 3-representation of one
of the three U(3) flavor groups. Therefore, in general,
Eq. (1) can be written as

L⇥ = �Q⌅̄PLQ⇤�
Q + �u⌅̄PRu⇤
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+h.c. , (2)

where H is the Higgs field and H̃ = i⇥2H�, Yu and Yd

are the two Yukawa couplings. For the monojet+ ⇤ ET
processes, the parton level processes are shown in Fig. 2,
where we can see that the at least one quark or anti-quark
initial state is needed. Therefore, all the terms propor-
tional to Yu or Yd are in general suppressed by the small
masses of the quarks in first two generations. Therefore,
in the case that ⌅ is a SU(2) singlet, to study the generic
feature of monojet+ ⇤ ET constraint on the “t-channel”
completion of DM models, we can neglect the terms pro-
portional to the Yukawa couplings. Furthermore, the sig-
natures in collider or direct detection experiments are not
sensitive to the chirality of the quarks unless �Q,u,d are
tuned to have some special relations. Therefore, in this
work, in the case that ⌅ is a SM singlet, we will only keep
the �u and �d terms and assume �u = �d ⇥ �. To sim-
plify our presentation, we also assume that the ⇤u and
⇤d are degenerate and M�u = M�d ⇥ M�. Then, the
Lagrangian can be simplified as

L⇥ = �⌅̄LqR⇤
� + h.c. . (3)

For simplicity, we will focus on the case in which only
right-handed quarks are coupled. For the coupling with
left handed quarks, minimally, either the mediator or the
DM needs to be in a SU(2)L doublet. There could be
additional signals if DM is part of a larger multiplet.
However, we will limit ourselves to the simpler case of
singlet DM for this paper.

We consider the case in which the all the quark flavors
are coupled. For light mediator, this immediately raises
the concern of violating stringent flavor constraints. The
best way to satisfy such constraints is probably to intro-
duce either the DM or the mediator (or both) as part of

LHC phenomenology I: monojet
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• Checking our simulation using vector current contact effective 
operator.

10 6 Results

Table 7: Summary of the contributions (in %) to the total uncertainty on the W+jets background
from the various factors used in the data-driven estimation.

Emiss
T ( GeV) > 250 > 300 > 350 > 400 > 450 > 500 > 550

Statistics (Nobs) 0.9 1.3 2.0 2.9 4.0 5.5 7.5
Background (Nbgd) 2.5 2.3 1.9 2.1 2.1 1.9 2.4
Acceptance and efficiency 2.0 2.0 2.2 2.4 2.8 3.3 4.1
PDFs 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Total 3.9 3.9 4.1 4.9 6.0 7.6 10.1

Table 8: SM background predictions compared with data after passing the selection require-
ments for various Emiss

T thresholds, corresponding to an integrated luminosity of 19.5 fb�1.
The uncertainties include both statistical and systematic terms and are considered to be un-
correlated. In the last two rows, expected and observed 95% confidence level upper limits on
possible contributions from new physics passing the selection requirements are given.

Emiss
T ( GeV) ⇧ > 250 > 300 > 350 > 400 > 450 > 500 > 550

Z(⌥⌥)+jets 30600 ± 1493 12119 ± 640 5286 ± 323 2569 ± 188 1394 ± 127 671 ± 81 370 ± 58
W+jets 17625 ± 681 6042 ± 236 2457 ± 102 1044 ± 51 516 ± 31 269 ± 20 128 ± 13
tt̄ 470 ± 235 175 ± 87.5 72 ± 36 32 ± 16 13 ± 6.5 6 ± 3.0 3 ± 1.5
Z(��)+jets 127 ± 63.5 43 ± 21.5 18 ± 9.0 8 ± 4.0 4 ± 2.0 2 ± 1.0 1 ± 0.5
Single t 156 ± 78.0 52 ± 26.0 20 ± 10.0 7 ± 3.5 2 ± 1.0 1 ± 0.5 0 ± 0
QCD Multijets 177 ±88.5 76 ±38.0 23 ±11.5 3 ±1.5 2 ±1.0 1 ± 0.5 0 ± 0
Total SM 49154 ± 1663 18506 ± 690 7875 ± 341 3663 ± 196 1931 ± 131 949 ± 83 501 ± 59
Data 50419 19108 8056 3677 1772 894 508
Exp. upper limit 3580 1500 773 424 229 165 125
Obs. upper limit 4695 2035 882 434 157 135 131

certainties on the acceptance from PDFs, and (iv) the uncertainty in the selection efficiency ⇤ as
determined from the difference in measured efficiency between data and simulation. A sum-
mary of the contributions of these uncertainties to the total error on the W+jets background is
shown in Table 7.

Background contributions from QCD multijet events, top and Z(��)+jets production are small.
QCD events are normalised to the cross section measured in dijet events, tt̄ events are nor-
malised to the measured cross section in the tt̄ inclusive cross section measurement and Z(��)+jets
are normalised using the comparison between data and MC in the Z(µµ) control sample after
applying the monojet selection. A 50% uncertainty is assigned to these background predictions.

6 Results

A summary of the predictions and corresponding uncertainties for all the SM backgrounds
compared to the data for different values of the Emiss

T cut are shown in Table 8. Also shown in
Table 9 are the number of events from representative signal points for ADD, dark matter and
Unparticles that pass the selection requirements for various Emiss

T thresholds.

The Emiss
T cut is optimised by using representative model points from the three signal scenarios.

The best expected limits are found to be at Emiss
T > 400 GeV for ADD and dark matter and

Emiss
T > 350 GeV for Unparticle models.

The total systematic uncertainty on the signal is found to be 20% for dark matter, ADD and
Unparticles. The sources of systematic uncertainty considered are: jet energy scale, PDFs,

CMS PAS EXO-12-048



Our simulation

LHC phenomenology I: monojet

• Checking our simulation using vector current contact effective 
operator.
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LHC phenomenology II: dijet

• The mediator is colored particle which can be produced by purely 
QCD process.
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FIG. 2: Diagrams for monojet+6 ET processes at the LHC in
the t-channel mediator scenario. (a1,a2) Initial state gluon-
split processes; (b1,b2) initial state gluon-emission processes;
(c) gluon-emission from the t�channel mediator; (d1-d4) me-
diator direct production processes.
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FIG. 3: Diagrams for mediator pair production processes
at the LHC, which leads to di-jet + 6 ET signal. (a1-a4) Dia-
grams from purely QCD interaction; (b) Diagram from the t-
channel DM exchanging; (c1-c4) Diagrams from the t-channel
Majorana dark matter exchanging.

This paper is organized as follows. In Section II, we de-
scribe the scenario studied in this paper. In Section III,
we discuss leading direct detection channels. In Sec-
tion IV, we present the LHC reach. In Section V, we
combine the reaches of LHC and direct detection, and
compare with the requirement from thermal relic abun-
dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-
actions of the form

L⇥ = �q⌅̄⇤
�q + h.c. , (1)

where q, ⌅ and ⇤ are the quark field, DM field and the
mediator, respectively. For fermionic (scalar) dark mat-
ter, the mediator ⇤ would be a scalar (fermion). The
mediator ⇤ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral
current which are strongly constrained by flavor exper-
iments. However, these constraints can be avoided by
imposing the minimal flavor violation (MFV) structure
to the Yukawa couplings [24]. In the quark sector, with-
out turning on the Yukawa couplings, the SM Lagrangian
contains a U(3)Q�U(3)u�U(3)d flavor symmetry. Now,
for simplicity, let’s first assume that ⌅ is a singlet of the
flavor group. Then, to make L⇥ invariant, the simplest
choice is to make ⇤ to be the 3-representation of one
of the three U(3) flavor groups. Therefore, in general,
Eq. (1) can be written as

L⇥ = �Q⌅̄PLQ⇤�
Q + �u⌅̄PRu⇤

�
u + �d⌅̄PRd⇤

�
d

+
�(1)
Qu⌅̄H⇤�

QYuPRu

�
+

�(1)
Qd⌅̄H̃⇤�

QYdPRd

�

+
�(2)
QuQ̄HYu⇤uPR⌅

�
+

�(2)
QdQ̄H̃Yd⇤dPR⌅

�
+h.c. , (2)

where H is the Higgs field and H̃ = i⇥2H�, Yu and Yd

are the two Yukawa couplings. For the monojet+ ⇤ ET
processes, the parton level processes are shown in Fig. 2,
where we can see that the at least one quark or anti-quark
initial state is needed. Therefore, all the terms propor-
tional to Yu or Yd are in general suppressed by the small
masses of the quarks in first two generations. Therefore,
in the case that ⌅ is a SU(2) singlet, to study the generic
feature of monojet+ ⇤ ET constraint on the “t-channel”
completion of DM models, we can neglect the terms pro-
portional to the Yukawa couplings. Furthermore, the sig-
natures in collider or direct detection experiments are not
sensitive to the chirality of the quarks unless �Q,u,d are
tuned to have some special relations. Therefore, in this
work, in the case that ⌅ is a SM singlet, we will only keep
the �u and �d terms and assume �u = �d ⇥ �. To sim-
plify our presentation, we also assume that the ⇤u and
⇤d are degenerate and M�u = M�d ⇥ M�. Then, the
Lagrangian can be simplified as

L⇥ = �⌅̄LqR⇤
� + h.c. . (3)

For simplicity, we will focus on the case in which only
right-handed quarks are coupled. For the coupling with
left handed quarks, minimally, either the mediator or the
DM needs to be in a SU(2)L doublet. There could be
additional signals if DM is part of a larger multiplet.
However, we will limit ourselves to the simpler case of
singlet DM for this paper.

We consider the case in which the all the quark flavors
are coupled. For light mediator, this immediately raises
the concern of violating stringent flavor constraints. The
best way to satisfy such constraints is probably to intro-
duce either the DM or the mediator (or both) as part of



LHC phenomenology II: dijet

• The total cross section is calculated using MadGraph5/MadEvent!

• A typical value of the K-factor is smaller than 1.05. We will neglect it in 
our calculation.!

• We compare the parton level cross section with the unfolded result of 
squark search given by the CMS collaboration.

20 8 Interpretations of the results
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Figure 8: Observed upper limit on the production cross section at 95% CL (indicated by the
colour scale) as a function of the parent and LSP sparticle masses for simplified models involv-
ing: the direct production of first- and second-generation squarks (D1, top left) and bottom
squarks (D2, top right); and pair-produced gluinos each decaying to the LSP and pairs of light
quarks (G1, middle), bottom quarks (G2, bottom left), or top quarks (G3, bottom right). The
black solid thick line indicates the observed exclusion assuming NLO+NLL SUSY production
cross section. The black solid thin lines represent the observed exclusions when varying the
cross section by its theoretical uncertainty. The purple dashed thick (thin) line indicates the
median (±1�) expected exclusion.

CMS collaboration, arXiv:1303.2985, 1402.4770
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• We compare the constraints to the t-channel mediator model from 
direct detection and 8 TeV LHC.!

• The difference between the t-channel mediator model and the 
effective operator approximation is shown clearly in the figures.
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• We compare the constraints to the t-channel mediator model from 
direct detection and 8 TeV LHC.!

• The difference between the t-channel mediator model and the 
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• We compare the constraints to the t-channel mediator model from 
direct detection and 8 TeV LHC.!

• The difference between the t-channel mediator model and the 
effective operator approximation is shown clearly in the figures.
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• The significance from 14 TeV LHC is predicted.!

• Monojet: jet Et > 500 GeV.!

• Squark search: missing Et > 150 GeV, pT1 > 200 GeV, pT2 > 130 
GeV.
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Conclusion

• We study a simplified t-channel UV completion model where the 
interaction between DM and SM particles are mediated by colored 
mediators couples to the DM particle and the right-handed quarks.!

• In this scenario, the relevant processes at the LHC are dark matter 
pair production associated with a quark or gluon, mediator-dark matter 
associated production, mediator pair production.!

• The EFT is not a good approximation and the mediators must be 
considered.!

• For light DM, the constraint from the LHC is always stronger than 
direct detection.!

• If the DM is a Majorana fermion, the constraint from the LHC is always 
stronger than direct detection due to a weak constraint to the SD 
cross section.



Thank you!



Dark matter in the Universe

• Galaxy rotation curve. 

• Bullet cluster. 

• Standard cosmology: ΛCDM
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