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Motivation



Hierarchy problem in loop integral:
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Quadratically divergent !

It is quit obscure to do such an integral since in
general the energy of a particle in the quantum
world have no reason to be continuous.



Fourian transformation between time and frequency




@ A “point” or a “plane wave” is only concept in mathematical
QFT.

@ The divergence is kind of “phase transition”?

@ Can the divergence be removed by Riemann ( function?

We should be very careful about the operation from a
summing to a integral



Bose Einstein Condensation:
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The way from discrete summing to integral may go
wrong in some physical systems.



work of thermal process:
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Riemann ( function:
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A brief Proof
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Discrete regularization



Procedure of Dimensional Regularization
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@ Feynman parameterization

use
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@ Wick Rotation

Rotate the integral from Minkovski space to Euclidean space:
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@ Dimensional Regularization
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divergent

© d=3—¢ n=1,2 the integral is finite. interestingly
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superficially divergent, but finite in complex integral.



Discrete regularization
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we consider the virtual particle like an oscillator, which energy gap
is denoted as [y, the energy level is jlp.
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All the divergence from the I' function now vanish in case of even
number dimension. The divergences are absorbed by the
Epstein-Hurwitz function :
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where ¢ = S/I2 and s =n —d/2 + 1/2.



Epstein-Hurwitz function can be regulated by Riemann ( function
in case of ¢2 < 1, the results depend on the parameter s, which is:
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where N is the natural number N =0,1,2,3,....
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Ef2(s; 1) is a continuous function in the complex plane.
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All the divergences vanish in our new method of regularization.
left only with two kinds of terms:
© finite term composed by the product of I' functions

© a summation of a power series of S/lg.



Comparision with of DR
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All the other functions are similar !
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Two level of understanding our regularization:

© Level I: this method is a trick, by which we can get the
almost the same results of dimensional regularization in
case of [2 > S.

© Level Il: What we are doing is an anti-BEC calculation,
the divergences are in fact condensed in the vacuum.
Then we should take a new look at the quantum field
theory.



Where does the divergence go ?
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are physics problems, divergence are removed by
renormalization.
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are mathematics problems, divergence are regulated by
mathematician.



Implications of the new
regularization



Predications in the QED

@ Electron magnetic movement a..
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® Running of coupling strength c.eg(q?).
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where A’ = exp(2 + @)



® Lamb shift.
Not changed by the new regularizations. The Uehling
potential comes from the imaginary part of photon self energy
I15(¢%) which not appear in the power series terms.



@ Gauge symmetry.
Ward identity requires:
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which violates the U(1) symmetry.
DR uses
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protecting the symmetry.

The new regularization violates the gauge symmetry too.
We can consider it as a auxilary method of DR, which
means that we use DR to study the gauge symmetry
and Lorentz symmetry. but use the WWZ to give the
prediction of scalar function.



@ (3 function of the QED.
The energy scale [ is like the temperature of the vacuum,
thus the 3 function of the coupling is kind of thermal
capacitance of the a theory. Especially when the momentum
approaches to the temperature then the 3 function will be
exactly the capacitance: (M? — 1)
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(G function of the QED is:
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The first term is the prediction of DR, the second term is the
modification of the new regularization.
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What is Hierarchy?

@ Tuning with a symmetry and with a divergence

@ Tuning without a symmetry but with a divergence




@ Tuning without a symmetry and without divergence




Hierarchy problem of a scalar mass

© )\ theory: the leading term of mass counter term is

A m? 2 12
2In2 — 2 1— 0.
= 2 16n 2( n2=2ylnos +3m,2)

© Yukawa theory: the leading term of mass counter term is

om = v { +/ dmm —z(1 —2)m?)

)

m2 —z(1 — z)m?2
(6ln2—6’y—31nf()s+1>

2 +miéz,
0

3y2 2 m2 — z(1 — x)m?
0z = — / dmm(l—x)<2ln2—27—§—ln% .
0



Points:

@ All the physical variables are discrete. Continuous Lorentz
symmetry is in fact conflict with Quantum Mechanics.

@ “Point” QFT is only zero order approximation of real physics.
Loop calculations must use discrete summation.

@ A theory must be defined on an error scale Ay not on an
absolute scale p. Integrated the heavy particles (A — o0) is
inaccurate understanding of Quantum Mechanics.

Assumption:

@ ly: energy gap, temperature of vacuum, or enery scale of a
theory

Q jlo: energy bound states, j is the quantum number,
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Distribution of jth bound states
We are tring to do a statistics of vacuum ?!



Conclusion

@ The divergence of a radiative correction is unphysical,
emergence of divergence is because a wrong
mathematical tools are used by physicists.



Conclusion

@ The divergence of a radiative correction is unphysical,
emergence of divergence is because a wrong
mathematical tools are used by physicists.

Thank you !
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