

毕效军

中国科学院高能物理研究所

13th LHC mini-workshop, 浙江大学物理学 院, 2014/11/11

Outline

结论

• AMS-02数据和研究过程概述

• 更多细节

Both pulsar and DM give good fit to the AMS-02 data

		$\frac{\chi^2}{\text{d.o.f.}}$	χ^2	$\frac{e^+}{e^+ + e^-}$	e^-	e^+
	PSR	0.92	175.4	42.95	54.22	78.26
DR	μ	0.89	171.6	39.94	55.36	76.26
	au	0.91	175.2	42.72	55.21	77.24
	PSR	0.47	88.99	51.87	14.77	22.35
DC	μ	1.16	223.1	88.7	46.95	87.45
	au	0.62	118.0	59.5	21.52	37.02

概述AMS-02数据和研究

AMS-02(阿尔法磁谱仪)

AMS02由丁肇中教授领导,历时近20年,参加实验的科学 工作者来自美洲,欧洲和亚洲的16个国家(地区),共有60 个大学或研究机构,600多人,目前投资约20亿美元。

AMS02于2011年5月16日发射升空,5月19日安装到空间站上 开始物理取数。

STS-1-4 launch May 16, 2011 @ 08:56 AM

AMS02是国际空间站上唯一大型科学实验,将长期在轨运

AMS物理目标:暗物质寻找 AMS物理目标:寻找反物质 AMS物理目标:带电宇宙线的精确测量

2013年4月发布第一个物理结果,既正电子比例的测量结果

J.Liu, Q. Yuan, X-J Bi, H. Li, and X. Zhang, PRD85, 043507, 2012 DM can explain both the positron excesses and total spectrum; but it is not better than astrophysical explanation. To clarify the situation more precise data are necessary.

怎么理解实验观察到的正电子超出呢? (since PAMELA 2008)

Astrophysical sources	Exotic sources
Nearby pulsars, SNRs, Propagation effects	Dark matter annihilation Dark matter decay
Early SN stage interaction of CRs	

$$e+/(e-+e+) =$$

 $(e+_{bkg}+e+_{extra})/(e-_{bkg}+e-_{extra}+e+_{bkg}+e+_{extra})$

Updated positron fraction and electron/positron spectra are published in Sep. 2014.

We have precise CR data

Quantitatively study of physics behind

Bkg+pulsar (or DM) to fit the data

$$\mathcal{P} = \begin{cases} \{A_p, \nu_1, \nu_2, p_{\mathrm{br}}^p\}, \\ \{A_e, \gamma_1, \gamma_2, p_{\mathrm{br}}^e\}, \\ \{A_{\mathrm{psr}}, \alpha, E_c\} \text{ or } \{m_{\chi}, \langle \sigma v \rangle\}, \\ \{c_{e^+}, \phi\}, \end{cases}$$

bkg protons, bkg electrons, exotic sources, others.

We fit the parameters to data by MCMC to determine the natures of bkg and extra sources.

Both pulsar and DM give good fit

Lin, Yuan, Bi, 1409.6248

More details

宇宙线的产生和传播

Figure 3. A schematic view of cosmic ray propagation in the interstellar medium (ISM), production of secondary nuclei, particles and γ -rays.

Bkg+pulsar (or DM) to fit the data

$$\mathcal{P} = \begin{cases} \{A_p, \nu_1, \nu_2, p_{\mathrm{br}}^p\}, & \mathrm{bk}\\ \{A_e, \gamma_1, \gamma_2, p_{\mathrm{br}}^e\}, & \mathrm{bk}\\ \frac{\{A_{\mathrm{psr}}, \alpha, E_c\} \text{ or } \{m_{\chi}, \langle \sigma v \rangle\}, & \mathrm{ex}\\ \frac{\{c_{e^+}, \phi\}, & \mathrm{ot} \end{cases} \end{cases}$$

bkg protons, bkg electrons, exotic sources, others.

$$q(p) = A_{p,e} \left(\frac{p}{p_{\text{br}}^{p,e}}\right)^{-\nu_1/\nu_2} \qquad q(p) = A_{\text{psr}} p^{-\alpha} \exp(-p/p_c)$$

1, propagation of charged particles is treated by Galprop. We fit the parameters to data by MCMC

2, Note: propagation parameters are the best value to fit B/ C, 10Be/9Be (later we discuss the uncertainties from astrophysics)

源的空间分布

• 脉冲星

$$q(p) = A_{psr} p^{-\alpha} \exp(-p/p_c)$$
$$f(R, z) \propto \left(\frac{R}{R_{\odot}}\right)^a \exp\left[-\frac{b(R - R_{\odot})}{R_{\odot}}\right] \exp\left(-\frac{|z|}{z_s}\right)$$

• 暗物质湮灭

$$q(E,r) = \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \sum_{f} B_f \left. \frac{\mathrm{d}N}{\mathrm{d}E} \right|_f \times \rho^2(r),$$
$$\rho(r) = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$$

It seems pulsar can fit data roughly. However, the χ^2 /dof=1.8; 6 σ deviates from expectaion. *Fermi data is not consistent with the AMS02 data*. We fit without including the Fermi data. χ^2 /dof=52/80; perfect fit to data!

其他一些有意义的结果

• 电子谱本底有"结构"

 宇宙线的传播模型不倾向于"重加速" 模型

Electrons can provide additional information about the GCR source

- High energy electrons have a high energy loss rate ∝ E²
 Lifetime of ~10⁵ years for >1 TeV electrons
- Transport of GCR through interstellar space is a diffusive process
 - Implies that source of high energy electrons are < 1 kpc away
- Electrons are accelerated in SNR
- Only a handful of SNR meet the lifetime & distance criteria
- Kobayashi et al (2004) calculations show structure in electron spectrum at high energy

"Advances in Cosmic Ray Science" Waseda University

NEWS & ANALYSIS

Science, 20 May 2011

SPACE SCIENCE

Chinese Academy Takes Space Under Its Wing

DAMPE (June 2015)

LOFTY AMBITIONS

l	Nizion	Chief scientist	Geels	Estimated laan ch	
	HANT	Li Tipeli, CAS Institute of Wigh Energy Physics and Tillinghua University	Servey of a may sources; detailed observations of known objects	2014	
	Shijian-10	No Wennol, CRS Institute of Mechanics	Study physical and biological systems in microprovity-and strong radiation environment	Early 2015	
	KuaFu Project	William Liu, Canadian Space Agency and CAS Center for Space Science and Applied Research	Study solar imfluence on space weather	Mid-2015	
	Dark Matter Satellite	Chang Jin, GAS Purpla Mountain Observatory	Search for dairk matter; study cosmic ray acceleration	Late 2015	
	Quantum Science Satellite	Pan Jiamert, University of Science and Technology of China	Quantum key distribution for secare communication; long- distance-quantum estanglement	2016	

Strategic Priority Research Program in Space Science

Dark Matter Particle Explorer Satellite

We consider contributions from nearby pulsars and add contributions from all pulsars.

Yin et al.,1304. 4128

DM vs pulsar: flux anisotropy vs spectrum wiggles

Systematic study of uncertainties of astrophysics

- Propagation
- Treatment of low energy data
- Models of strong interaction
- Galprop version

Propagation uncertainties

Low energy data

Strong interaction models

Different Galprop versions

- AMS-02数据使得宇宙线物理需要进行精确 定量研究
- 定量研究AMS-02的数据发现了一些有趣的 宇宙线物理的效应: 探测到邻近的源的发 射、约束传播模型
- 正电子超出仍然不能确定来源。

NEWS & ANALYSIS

Science, 20 May 2011

SPACE SCIENCE

Chinese Academy Takes Space Under Its Wing

DAMPE (June 2015)

LOFTY AMBITIONS

l	Nizion	Chief scientist	Geels	Estimated laan ch	
	HANT	Li Tipeli, CAS Institute of Wigh Energy Physics and Tillinghua University	Servey of a may sources; detailed observations of known objects	2014	
	Shijian-10	No Wennol, CRS Institute of Mechanics	Study physical and biological systems in microprovity-and strong radiation environment	Early 2015	
	KuaFu Project	William Liu, Canadian Space Agency and CAS Center for Space Science and Applied Research	Study solar imfluence on space weather	Mid-2015	
	Dark Matter Satellite	Chang Jin, GAS Purpla Mountain Observatory	Search for dairk matter; study cosmic ray acceleration	Late 2015	
	Quantum Science Satellite	Pan Jiamert, University of Science and Technology of China	Quantum key distribution for secare communication; long- distance-quantum estanglement	2016	

Strategic Priority Research Program in Space Science

Dark Matter Particle Explorer Satellite

暗物质间接探测最新重要的进展一点启示 及DAMPE在国际竞争中的一些优势

启示: 暗物质的空间间接探测(尤其是伽玛射线、电子)的探测的确 是颇具前景的一个国际重大前沿领域,有望取得突破性的成果

Detector	能量范围 (GeV)	能量分辨率	质子电子分辨 能力	Key Instrument (Thickness of CAL)	电子/ 接受度 (m ² srday)
FERMI-LAT	20-1,000	5-20 % (20-1000 GeV)	10 ³ -10 ⁴ (20-1000GeV) Energy dep. GF	Tracker+ACD + Thin Seg. CAL (W:1.5X ₀ +CsI:8.6X ₀)	60@TeV (1 year)
AMS	1-1,000 (Due to Magnet)	~1% @100 GeV	10 ⁴ (x 10 ² by TRD)	Magnet+IMC +TRD+RICH (Lead: 17X ₀)	~50@TeV (1year)
CALET	1-10,000	~2-3% (>100 GeV)	~ 10 ⁵	IMC+CAL (W: 3 X ₀ + PWO : 27 X ₀)	44 (1years)
DAMPE	1-10,000	~1% (>100 GeV)	~10 ⁶	IMC+CAL+Neutron (W: 2 X ₀ + BGO: 32 X ₀)	180 (1 years)

DAMPE最主要的探测对像正是伽玛射线和电子,在100GeV处的"接受度"小于Fermi但数倍于AMS-02,能量分辨显著优于Fermi,这对于探测暗物质湮灭线谱信号非常关键。DAMPE可探测能量范围为10TeV,将开辟TeV能段的空间电子能谱测量新窗口

暗物质粒子卫星

- 探测器重量1200Kg (0.5m².sr, 是ATIC的3倍)
- ATIC总共飞行48天, 观测到330个电子(大于300GeV)
- 新探测器飞行60天, 可以发现2000个电子(大于 300GeV)

Ee^{.30}dN/dEe(m⁻²s⁻¹sr⁻¹GeV²)

10

10

• 是世界上第一次在10GeV-10TeV能段对伽玛射线进 行高分辨观测能量分辨

100

Energy (GeV)

1,000

中国空间站

Baseline design of HERD

Cosmic Ray y Energy Spectrum (Example)

2018

Expected performance of HERD

γ/e energy range (CALO)	tens of GeV-10TeV	
nucleon energy range (CALO)	up to PeV	
γ/e angular resol. (top Si-strips)	0.1°	
nucleon charge resol. (all Si-strips)	0.1-0.15 c.u	
γ/e energy resolution (CALO)	<1%@200GeV	
proton energy resolution (CALO)	20%	
e/p separation power (CALO)	<10 ⁻⁵	
electron eff. geometrical factor (CALO)	3.1 m ² sr@200 GeV	
proton eff. geometrical factor (CALO)	2.3 m ² sr@100 TeV	

- Rock burst: mainly right after excavation
- Rich underground water: 5~7m³/s, pressure 10MPa

