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Motivation & formalism for measuring D-D
mixing & CPV

Experimental status

LHCb 3fb' observations
- Published in Phys. Rev. Lett. 111, 251801 (2013)
Interpretation of the LHCb results




Formalism in neutral meson mixing

« Schrodinger equation describing the time evolution:
0 [PO()\ [ M, Mlg)f(ru rm)] (|P0u)>>
ot \|P'(1))) — [\Mfy M) 2\I'f, Iz \P"t))

« Mass eigenstates can be different from their flavor
eigenstates: CPTinvariance=> M, =M,,,I', =T,

|Pru) =p|P") £ q\?“) where 2=, 12 ? 12
I_ﬂ_ myg — my, - AT _FH_FL
ST L'y +07)/2 ST 90 Ly +1;

« If CPis conserved, g and p are real, i.e. |g/p| = 1
and ¢ = arg(g/p) =0



Mixing of neutral mesons: phenomenology
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Motivation in measuring charm
mixing & CPV

« DO—D° oscillation is slow (x, y ~ 1%), and v T
goes through two different mechanisms:

- Long distance contribution is dominant
but hard to predict

— Short distance contribution is CKM +
GIM suppressed. NP might manifest in

Long-distance contribution

the loop
 FCNC processes with up-type > 153 =
quark, complementary to those with T - —

down quarks (K or B mesons,
already studied with observed CPV) W W

* Observation of enhanced CPV (>> 1%) in
the charm sector would be a clear indication | o ———

of new physics > | d,s,b | .ﬁ
Short-distance contribution

CKM suppression: b
GIM suppression: d, s




Motivation in measuring charm
mixing & CPV

« D°- DO oscillation is slow (x, y ~ 1%), and
goes through two different mechanisms:

- Long distance contribution is dominant
but hard to predict

- Short distance contribution is CKM +
GIM suppressed. NP might manifest in
the loop

 FCNC processes with up-type
quark, complementary to those with
down quarks (K or B mesons,
already studied with observed CPV)

* Observation of enhanced CPV (>> 1%) in
the charm sector would be a clear indication
of new physics
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Charm mixing wit

h D° — KT

* Two-body decays with only tree-level contribution

D* — DO 11t /rﬂfi; Do R‘ Wrong-sign events DCSW§<E K"

DO flavor is ~—, DO Kt (WS) c d -

tagged by the w u u
“soft” pion -

from D* D*+ — DO 17+ right-sign events CF W§<a T

—, DV KT (RS) : .

_CF a K

* Assuming x, Yy << 1 and no CPV, we have the
time-dependent WS/RS ratio:

R(t) =

6: strong phase between

Ratio of DCS to Interference of

DCS and CF amplitudes
N (t) ' = xcosd + ysind
WS / - .
— — -+ Yy =1ycosd— xsind
NRS<t> ]
\Vj \4

—>Mixing parameters

CF decay rates DCS and mixed
decays

Measurements on R, x'?, and y’




CPV in charm mixing

 Allowing for CPV, the WS-to-RS ratios are
expressed separately for D° and D°:

(&) + (),

- RT(t)= R, + /R,y t+

=2 (o 1—12
R(t) = Ry /R -t + &) I(y )

14+ A" |
' = ( , ‘”) (2’ cos ¢ £ 3 sin @)
L+ Ay

. == }1_,-'.__1

1/4
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fz

Mixing measurements on
R.*, x'#,and y'*in D, and
look for the differences

12 ]2
Ay = a/pI” = Ip/dl ¢ = arg (q) .

lq/p|% + |p/q|* p

CPV in mixing / interference between
mixing and decay

R}, — R,
R}, + R

CPV in WS decay
amplitude
(Direct CPV)

Ap =




Common methods in charm
mixing/CPV measurements

Divide RS and WS events into a number of bins of D
decay time

In each time bin, the RS and WS signal yields are
collected from fits to get the WS-to-RS ratio

- The WS signal shapes are fixed to the RS ones

Fit the WS/RS ratio vs. D decay time to extract charm
mixing parameters

Correction to account for (secondary) D* from B decays
with mis-assigned decay time

Search for CPV: separate mixing measurements for D / D



History of experlmental observatlons
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D° mixing @ CDF in 2013

Extraction of WS signals from the fit to the
mass difference of M(K'tnt™) - M(K*rr') - M(mt™")

Fit to the WS/RS ratios with
different mixing hypotheses

— — 9
=5t CDF 9.6 fb" = | — Mixing fit "
Fi:: 20:_ ...... o St Prompt component (mixing fit)
_‘E - - e Data
= F > 7L e
v, 155 - ==:No-mixing fit
T I 32.7k WS events - 6F ~
< 101 - Data :
- — Total fit S
50 D#*signal | L enddet Pl i icccccseber e e
===Background 4
T S T T TR TR T 3f ‘L CDF 9.6 fb”
Wrong-Sign AM DIEVI{*:] . _ ‘_|_I L 2I L :I‘ % ! é ! To
mE CDF 9.6 fb" t/T
; -
20+ \—
No-mixing hypothesis _ N |
excluded at 6.1c el
—_— . . D’— =i Y I'."'
The second D°-D° mixing [ e + PRL 111, 231802 (2013)
observation from a single s P
experiment after LHCb in - R R
2012 (PRrL 110, 101802 (2013) ) x? (107)



LHCb experiment

L)
L N +
n‘!‘ff‘l CMS ; '.

e Single-arm forward spectrometer covering
the pseudo-rapidity range2 <n <5

» Detection of particles containing b or ¢ quarks



LHCb experimen

t as a charm
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« 20x larger charm cross-section than beauty:

o(pp>bbX)= 75+ 14 ub

[PLB694:209-216] = at 7 TeV in the LHCb acceptance

o(pp—>ccX) =1419 £ 134 ub

[arXiv:1302.2864]

The world's largest charm samples!




LHCDb detector

Hardware trigger system for
hadrons: based on large E.

Tracking system:

Ap/p = 0.4-0.6% @ 5-100 GeV/c, corresponding
to ~8 MeV/c? mass resolution for D - Kt

depositions in the hadron Cal.

Muon EM + Hadron Requiring [M(KTT) —

Calorimeters MIEGEt M(D%)| < 24 MeV/c?
RICHZ2 IT+6T

T
el )

Silicon Vertex Locator:
20 um impact parameter
(IP) resolution,
corresponding to ~0.1tT
N - - - decay-time resolution for
O O O .
D - Kn




LHCDb detector

Hardware trigger system for

hadrons: based on large E. Tracking system:

depositions in the hadron Cal. Ap/p = 0.4-0.6% @ 5-100 GeV/c, corresponding

to ~8 MeV/c? mass resolution for D —» Kn
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LHCD trigger on hadronic charm decays

[ LHC rate ~ 15 MHz ] cC fraction ~ 10%

s 2

[ Hardware Er trigger ~ 1 MHz J cC fraction ~ 50%

e Two stages: hardware LO and software HLT
* High charm rate requires exclusive
reconstruction in trigger

~\

[ High pT, IP track ~ 80 khHz efficiency ~ 50%

[ Exclusive D—hh/3h/4h ~ 2 kHz | efficiency ~ 50-90%

1




Fits to extract WS/RS signals
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Candidates/(0.1 MeV/c?)

x10°
1:_ LHCD *'T it - _:
Z TJ. P Background A
0.8F || .
0.6F Tl .
+ ]
0.2 ‘ l* 7.4 M ]
o ,_f E §

Time-integrated

2.005 2.01 2.015
M (D)) [GeV/e?]
x-ll{}ﬁl T T T I T T T T I T T T T
3F . TOS -
- LHCH TT o i}l? 2012TOS ]
2.5¢ TJ, P Background
|| —;
1.5F I .
: ! | :
1E R ;
0.5 __ |+ lT 1 8 . 8 M _:
Tr ] ]
C . ]
of 7.\ .
2.005 2.01 2.015

M (DY) [GeV/e?]

2.02

2.02

Candidates/(0.1 MeV/c?)

251

[
=

—
Lh
T T T T T T 17T

0
2.005

[—
=
T T T T

Lh
TT T T T

fits

TOS: events being
the complement of

TOS
x 1| D3 T T I T T T I T T T T
N * WS 2011 TOS
LHCO  y 5
N B Background
— Matched to RS

2.005 2.01 2.015
M (DY) [GeV/c?]
X 1| I:FI T T T I T T T T I T T T T
LECD % “_-rS 2012 TOS

. — Fit
n 11 B Background

J, | —— Matched to R

P

.

#

2.01
M (D)) [GeV/e?]

2.015

2.02

2.02

1fb
collected
@ 7 GeV

2fb
collected
@ 8 GeV

19




Charge asymmetry in K
detection

* In the WS/RS ratio separated by D* charge:
ﬂ-ﬁrs B N (D** — [K*7F|prT) B L e(K*7n¥)
ﬁ-‘?%s N (D** — [H:F?ri]g?rgi) e(KFr*)
— D* production and soft pion instrumental asymmetries
cancel out in the ratio

* Still needed to consider: the non-zero detection asymmetry
Ay oK) (K )
(Kt )+ e(K—mt)

— The efficiency ratio € * = 1/e - = e(K*m)/e(Kn* ) is
obtained from dedicated control samples:

e(KTn™) ND —Krn 7)) y N(Dt = Kz T)
e(K—7t) N(Dt = K-ntat) " N(D- = Kr—)
- A_Is found to be at ~1% with 0.2% precision and

independent of decay time




Charge asymmetry in K
detection

* In the WS/RS ratio separ: ——
weighted in pr(K),
Nig N(D*: 5 [K | nKandpimto

ensure a correct

YRS N (D*i — [I‘l estimate of the K

t
_ D* production and sof (1 =22
cancel out in the ratio

« Still needed to consider: - N = .\@
A

Trigger" pions

rt” (K'm)—eKm T
‘4KTI' — S ~
e(Krm) +e(Km weighted in pr(Tiuig), pr(D*) and n(D*) to match the (now
. . 4 reweighted) D*—=K-tt'rt* sample, in order properly cancel
— The eﬂ:ICIenCy ratio Er any production asymmetry and any instrumental
Obtained from dedicat 2 asymmetry associated with the trigger pion
e(KtTn=) ND- - Ktrs—7n") N(D" = KrT)

(K-77) N(D* = K-ntnt) "~ N(D- = K07-)

- A_Is found to be at ~1% with 0.2% precision and
independent of decay time




Background from secondary D
decays

D°-s from B decays are assigned with
wrong decay-time

Suppressed with requirement on x%(IP)

The fraction of this secondary
component /. *(¢) can induce bias A (¢)

in time-dependent WS/RS ratio. The
bias is bounded by:

0<8,(0)< f;°O[1= R,/ R, = of =D

S
= M 108
2 mi2f

S

with observed ratio R" (¢) = R(¢#)[1-A,(¥)] 8F E
Due to small level of contamination, we 6 e .
can simply assume the maximum bias IS h
No charge asymmetry observed, ok "” LHCb 1
contamination assumed to be symmetric Ofen o | L e

in the fit 0 2 4 6 20
74"



Background from secondary D

decays

D°-s from B decays are assigned with
wrong decay-time

Suppressed with requirement on x%(IP)

The fraction of this secondary
component /. *(¢) can induce bias A (¢)

in time-dependent WS/RS ratio. The S 14F
bias is bounded by: 2 wiof

0<A, (1)< [B0[1-R, /R,

with observed ratio R" (¢) = R(¢)[1 —A,(?)]
Due to small level of contamination, we
can simply assume the maximum bias

No charge asymmetry observed,
contamination assumed to be symmetric
in the fit
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Peaking background

N 25 (double mis-ID)

« RS events with both K and 1 being £ (t) = R(t) + VRS
mis-IDed as each other will be K :
indistinguishable with real WS g
signals in m(D 1 ) fits, and cause 70549+ b

o | % FE TOS LHCD :
bias in the WS/RS ratio Z F=p

* The overall effect is well below 1% @ UF =’ ]
of WS signals due to tight o 40F =
requirements on PID and M(Km) % 30f ]l‘ﬁ S E
window i o ﬂ}ﬂ" ‘:F | :

* No charge asymmetry observed, ﬂg m# E
contamination assumed to be % (-,5. e
symmetric in the fit 0o 2z 4 6 20
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Time-dependent fit

configuration

* The mixing parameters are determined

by minimizing:

,'2_§

7 1

Sum over 13 time
bins for separately
for 2011 and 2012
data, and for TOS
and TOS samples

(

Predicted ratios corrected for the
peaking and secondary backgrounds

T.

[

L 2 A 2
_Ej—Ra_ re T?_ _E*P_Rii_ re ‘ ' ‘
’pd)+( ‘pd)]+xf+x%+x§

Constraint for detection asymmetry

Constraint for peaking background:
- 3 Mainly candidates with K, from D° both being
J ) mis-IDed, suppresed by tight PID requirements

Constraint for secondary background

Systematic effects are accounted for in the final fits



WS/RS vyield ratio fits

* Fits to the 3fb™
data for 3
different
hypotheses on

the CP symmetry = St T ChVallowed -
e I No direct CPV A

Efficiency correcteQ/

differences between the - :
WS/RS ratios of D ™ Y S S A A— TN




Systematics
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LHCDb results

10 L L L L L L e . | L L
| LHCb (a) CPVallowed (b) No direct CPV T (c) No CPV ]
! R, =R, T e Ry =R,
_ T .y :*‘“;"-. 2t = 2 ]
T or T T N
= 4f + T -
[ y I [ ++99.7%CL IR ]
2k ==DP%683%CL ) 1 =--D°68.3%CL I --955%CL ]
[ —D%68.3% CL I —D%68.3% CL [ —68.3% CL i
0'..|....|....|....|.....I....I....I....I..'..|....|....|....|..'
-0.1 0 0.1 0.2 -0.1 0 0.1 0.2 -0.1 0 0.1 0.2
x'? [107]
LHCb Uncertainties are statistical and systematic combined
Direct and indirect C'P violation no direct C'P violation no C'P violation
REp [10—*] 3.568 +£0.066 | Rp [10_3] 3.568 = 0.066 | Rp [10_3] 3.568 £+ 0.066
Ap [1072]  —0.7+19 || y* [1073] 478 +1.07 | ¢/ [1073]  4.81+1.00
y't 1077 51+1.4 | 2% [107?] 6.4+55 | 2 [1077] 5.5 +4.9
72+ [10-7] 19+70 |y~ [1073]  4.83 £1.07 | x2/ndf 86.41/101
Y’ 11077 45+14 | 2 [107?] 4.6 +5.5
22~ [10-7] 6.0+6.8 | x2/ndf 85.99 /99
y?2 /ndf 85.87 /98
R}, — R;| Results are consistent with CP conservation




From Phys.Rev.Lett. 111 (2013) 251801

Table 1: Results of fits to the data for different hypotheses on the CP symmetry. The reported
uncertainties are statistical and systematic, respectively.

Direct and indirect CP violation

R}, [1'[]_3] 3.545 = 0.082 = 0.048
y' T [1'[]_3] 51+ 1.2 £0.7
"t [1077] 49+ 6.0 £3.6
Ry [107%] 3.501 £0.081 +0.048
y'~ [1079] 45+ 1.2 0.7
" [1077] 6.0+ 58 +£3.6
2 /ndf 85.9/98

No direct CP violation
Rp [107%] 3.568 +£0.058 +0.033
y't [1079] 48+ 09 +0.6
' [1077] 6.4+ 4.7 £3.0
y'~ [1073] 48+ 09 +0.6
2= [1077] 46+ 46 +3.0
2 /ndf 86.0/99

No CP violation

Rp [107%] 3.568 £0.058 +0.033
y  [1073 48+ 0.8 £0.5
% [1077] hH+ 4.2 £2.6
2 /ndf 86.4/101



http://dx.doi.org/10.1103/PhysRevLett.111.251801

From Phys.Rev.Lett. 111 (2013) 251801

Table 2: Detailed fit results. Reported uncertainties and correlation coefficients include both

statistical and systematic sources.

Direct and indirect C'P violation

Results Correlations
Parameter Fit value R} y'" "t Ry Y '
Ry [107°] 3545+ 0.095 1.000 —0.942 0.862 —0.016 —0.007 0.006
Y [1077] 51414 1.000 —0.968 —0.007 0.007 —0.007
22+ [1077] 49+7.0 1.000 0.005 —-0.007 0.008
Ry [107°] 3.591 4 0.094 1.000 —0.941 0.858
y'— [1077] 454+ 1.4 1.000 —0.966
2 [1077] 6.0+7.0 1.000
No direct CP violation
Results Correlations
Parameter Fit value Rp y'" 2+ y' '
Rp [1077] 3.568 £0.066 1.000 —0.894 0.770 —0.895 0.772
Yyt (1077 4.8+1.1 1.000 —0.949 0.765 —0.662
2 [1077] 6.4 +5.5 1.000 —0.662  0.574
y'— [1073] 48+1.1 1.000 —0.950
2= [1075] 4.6 +£5.5 1.000

No CP violation

Results Correlations
Parameter Fit value Rp Yy’ 7"
Rp [107°] 3.568 £0.066 1.000 —0.953 0.869
y' [1079] 4.8 +1.0 1.000 —0.967

22 [10°%] 554409 1.000

30


http://dx.doi.org/10.1103/PhysRevLett.111.251801

Comparison of mixing results

* The current LHCDb results are consistent
with other results, and provide an update

to the previous ones wit
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Interpretation of the LHCDb results

e Using only the LHCD results, and with

the constraints of:

I+

2 = (lg/p)F! (2 cosd + ' sin @)

I+

e The 68.3% C.L. constraints

- 0.75 < |qg/p| < 1.24 for all CPV allowed
- 0.91 < |g/p| < 1.31 for the case without

direct CPV

 The LHCD results contribute in the global

fits for D° — D® mixing

= = (la/p)" (¥ cos ¢ Fa'sing)
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WS/RS ratio versus D° decay time

* |n the case of no DCPV, and x’,

y' ,¢ being very close to O 6
— The slope of the ratios and E S
differences in the ratiosare ¢ [
proportional to y’, and =
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Global Fit for D°- D° Mixing
(allowing for CP violation)
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Much improved constraints on |g/p| and ¢ after the inclusion of the most
recent LHCb D mixing/CPV results and CDF D mixing results, as well as the

LHCb A_results (PRL 112 (2014) 0418071)



Summary

 The WS mixing and CPV results from hadron
colliders are presented with unprecedented
level of precision

 We now have the observation of D°-D°
oscillations from one single experiment

* Neither direct CPV or CPV in mixing is
observed, being consistent with SM

 The LHCb CPV results are capable of playing
an important role in constraining |q/p|
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