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Single transverse Spin Asymmetry(SSA)

@ Hadroproduction: Pa(S.)+ Pg — h+ X;
L.Bland,1410.1140

@ Semi-inclusive DIS: e+ P(S.) = ¢ + h+ X;
Hermes Collaboration,0906.3918; Compass Collaboration,1205.5121;1205.5122

@ Polarized Drell-Yan(DY): Pa(S1)+ Pg ="+ X — ITI7 + X.

Prepared...
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Explanation for SSA

Factorization:

o= H(Xa,Xb, Zh) X fA(Xa) ® fB(Xb) ® Dh(zh) + O(ACEQCD )v (1)

Q: the hard scale in the hard scattering, /5 or Py, . PDFs:
iﬁ_w‘em—xw<P7S|1;(0)7%(£_)|P75> = ()",

[ P SBOR s NP ) = (S + par (St

/ G P (0 )IP, ) = Brelx).

[ S P B0 sl )IP,5) = mG)SE )+ (S 10,
2)

Light-cone coordinates: a* = a™ I + a~n* + al,n- =1, " =7”=0.



Twist-3 factorization

@ Twist-2 factorization: failed to explain SSA;
@ Reason: Massless QCD conserves the helicity of fermion;

@ Twist-3 factorization: gr(x)?

However, g7(x) is not renormalizable, thus not proper to be used to
factorize SSA. X.Ji&J.0sborne0102026

More general twist-3 distribution functions(Qiu-Sterman matrix
elements) are required, J.Qiu&G.Sterman,PRL67(1991)2264;NPB378(1992)52
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Polarized DY: g, -integrated

Feature: There is only one hard scale Q% = (h + h)>.
Pa(S1) + Ps = 7*(q) + X — I(ki)I(ka) + X, (4)

where P4 g are along z-axis, spin vector is perpendicular to Pa. In
light-cone coordinates,

M2 M2
PR = PiI* + —2Pi ~ PfI*, Ph=Pgn'+ —2PB_ ~ Pgn*, (5)
A B

where for any four vector a* = at/* +a~n* + 2, n-1=1,n* = =0.
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2 + 2 _
where x = sd—~ L, y=50— ~ 1
A



Hadronic tensor:

d4 . . i
wr _/(27r))<4e""x<PA5A,PBIJ“(X)J (0)IPaSa, Ps),

J* =", (7)
Leptonic tensor:
L =2(ki'ky + ki ks — 8" @?). (8)

The cross section is defined in Collins-Soper(CS) frame, which is the rest
frame of lepton pair.
The angle of one lepton is defined as:

kit = g(l,sin 6 cos ¢, sin fsin ¢, cos 6)



Twist-3 factorization

(a) (b)
Three lowest order diagrams contributing to SSA. The dot means QED
interaction. The bubbles represent all possible Feynman diagrams.

Basic formula:
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Lowest order diagrams

Basic assumption: All twist-3 contribution comes from collinear
expansion.

@ All partons are collinear, either to P4 or to Pg;

@ Expansion in the transverse momenta of partons, including fermions
and gluons.

Note: One can explicitly check this assumption order by order.



Example: Born diagram

d*¢,
(2m)*

&4 (PaSal;(0)qi(E:)| PaSa)

Wi = / d*kad*kgd* (ka + ke — q)viAh /




Example: Born diagram

v v d4 a _i&s- -
w} =/d4kAd4kB54(kA + ks — q)ﬂﬂjn/ (275)465‘"’ “4(PaSal;(0)qi(&) | PaSa)

d*¢s icyke _
/Wes “8 (Pg|qn(0)Gm(Es)|Ps), (1)

@ Twist-2 contribution comes ONLY from collinear region;

@ Twist-3 contribution can be extracted from collinear expansion of hard
part to the next to leading power(O()));

@ Collinear region:

ki = (ki ka oKy ) ~ Q(L,N%,N),

Kb = (kg kg k2 ) ~ QA% 1,A), A= A%CD. (12)



Collinear expansion: Born diagram

Collinear limit for antiquark:
§*(ka + ks — q) =~ 5(ki — q")d(kg — q )% (kar — q1).

v v d4 a i&,- -
wi = [ ksl = a")lkas — a0ty [ G (PaSA(0)a(€:) PaSH

/ d*ksd(kg —q") / (df)b4 &% (Pg|qn(0)am(€5)|Pe)

=— Wc‘;(y)/d kab(ka — " )6(kar — qL) Vi (Y'Y )in

/%ei&m<pA5A|z,j(0)q,-(£a)|PA5A>v (13)

where [ %k e 45 (Pg|qn(0)am(€6)|Ps) = — s [ay)yt +---].



Collinear expansion: Born diagram

Collinear expansion for quark,

ka ~ O(1), kar ~ O(}),

_ 04(q1)

0(kar —q1) =d(qg
(kas —0:) = 8(a) ~ 5.5

Ko+ O(N). (14)

Integrating over ka, and k, , the twist-3 contribution of (g )-term concerns
two distributions, (P, s|g(0)(v" .~ vs)q(¢7)|P,s). But,

@ Using PT transformation, one can show
(PSalg(0)y7 q(§7)IPSa) = (P, —Salq(0)v1 q(§7)|P, —Sa),

which is spin independent;

@ ~/ ~5 corresponds to distribution gr(x), but s causes p, v to be
antisymmetric.



Collinear expansion: Born diagram

Only derivative term may give twist-3 contribution,

i
4N,

/Cf—w;eig;kz<PA5A|5(0)7+8iQ(fa—)|PA5A>- (15)

wh =

q _ 00
Q(}/) / de(S(kZ — q+)Tr(,y+pyM,y ,YV)%
€L

Once again, PT invariance leads to

(PSala(0)y" 91 q(£7)|PSa) = (P, —S5ala(0)y" 8% q(¢7)|P, —Sa), which
is also spin independent.

Conclusion: Born diagram has no twist-3 contribution.



One gluon exchanged diagrams

Following the same procedure, one can calculate the twist-3 contribution
of Fig.b,c,

The momentum of the gluon is k, and going into the EM vertex in both
diagrams. The bubbles represent all possible Feynman diagrams.



One gluon exchanged diagrams
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Using PT transformation, one can show [---] is real. Thus, in order to
obtain a real W*”, one should take the discontinuity of the amplitudes,

1 o



Non-derivative part

In order to obtain a real W*”, one should take the discontinuity of the
amplitudes, i.e.,

1

- —j +
ik, (18)

Then non-derivative part:

_ 1 . d£7d57~—+~—+
we 5T Zgo | 253 TS LTk gk
bre 2Nk q(v)é(aL)78 kggo/ G

@Oy (G + G M) (E)a(& ), (19)
which satisfies color gauge invariance automatically. But the derivative
term is not the case.



Derivative term

Derivative part:

WH ia(y)gjju 85(QL) %gs/dk+5(k+)/ daa-_dg eii;kX-Hi*k*

bte N, oq" s
@0y (91 67)(E (€, ))- (20)
Thanks to the factor §(k™), one can write the corresponding distribution
into gauge invariant form, 9/ G* = —G[* + 9+ G7,

5(k+)/d£*e"5_k+6+6f(§*) — §(k+) (6 (00™) — G (—00™)) = 0.
(21)

Now the derivative term can be written into gauge invariant form
through the replacement 9} Gt — —G*.



Another way

One may ask how to recover the nonlinear term in field strength tensor,
i.e.,, GTG/. It is difficult, because in derivative term, all coherent gluons
are GT-gluon. The derivative on the fermion field may be helpful, since
971 = DV — igGl1p and D, -term does not contribute to SSA due to
PT invariance.

However, there is a more elegant way. Remember that the number of
GT-gluon connecting hard part and the jet can be infinity. And all these
gluons can be summed up into the gauge link. In this sense, Fig.a,b,c all
are the same, and the derivative term is

W —raal i [ e T o o (el (e )

(22)

where L,(x) = Pexp[—igs fi)oo dAGT(x + An)].



Gauge link

A useful identity:
o (ciq) (€)= LiD" q(e™) — igs / dNO(— NGIPL") (n+€7)Lhq(e),
(23)

which can be derived from EOM: n- DL, = 0.
Ignoring D -term and using the definition of § function

i dw —iw
(=) = 27r/w+iee g (24)
we have
w0 Waé(qL)/ dw é/df_; ie; gt /oo iAw
w DNC q(y)gl 3C/i w+ie | 27 A e . de
@O (L1GLa) (n -+ &)L(E bal&r )] - (25)

The factor [- - -] is real from PT symmetry. Hence, we have to take the
discontinuity of the other part.



wh S Nica(y)gﬁ”ag(jf) / w(fie [% / %s eiera / dre™
(@O (LEGI7L,) (An+€)L(E)a(€r))] - (26)

The factor [-- -] is real from PT symmetry. Hence, we have to take the
discontinuity of the other part.

1 3(5(q )gs /d{‘df‘ =t i T
WHY pv S lim a P& ky+iEk
Oy d0el aq7 2 kDo o

@O (L1G7Ln) (€7)L(E) (&), (27)

which is gauge invariant, and there is no the noise of nonlinear term.




Final result

@ Hadronic tensor:

1

= By zp a52(‘3/J-)
2N,

1 ~V Ve
a(y) Tr(x, x) q—,(/“Sﬁr/ §1)6%(q1) + £130 — 5 |

wH
151 aqi
(28)

where 3 = ¢”s,, € = 1.
@ EM gauge invariance: [ d’q.q.W" F(q.)=0.
@ Cross section:

d 2150l o
dQZJ’Q =- gl\l|553| sin 20 sin(¢ — ¢5)/dxdy6(xy5 — Q@)a(y) Tr(x, x).

(29)




Summary and Outlook

@ Collinear expansion and color and EM gauge invariance;
@ Tree level result;
@ Generalize to Semi-inclusive DIS;

@ One loop correction: very important examination of twist-3
factorization.





