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Abstract The multi-order exact solutions of the two-dimensional complex Ginzburg—landau equation are obtaincd by
making vse of the wave-packet theory. In these solutions, the seroth-order exact solution is a plane wave, the first-order
exact solutions are shock waves for the amplitude and spiral waves both between the amplitude and the shift of phase

and betweon the shift of phase and the distance.
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1 Introduction

The two-dimensional complex Ginzburg-Landau equa-
tion including the non-steady, nonlinear, dispersive and
diffusive terms, as well as the linear growth (or damping)
term is usually written as

i% + (o + fe) V7 u+ (61 + gy —iyu=0, (1)
where § = +/—1 is a pure imaginary number, oy, a2, 81,
8, and +y are real constants. V2 = 82/02% +82/8y? is the
two-dimensional Laplacian. (1 +182)|u|*u represents the
nonlinear effects, oy V2u and ic;V?u represent the dis-
persive and diffusive effects, respectively. iyu denotes the
linear, growth or damping.

When @y = fy = v = 0, the two-dimensional complex
Ginzburg-Landau equation (1) degenerates intc the fol-

lowing two-dimensional nonlinear Schrédinger equation,

a
'1—8—': + o Vi + ,@1|U|2u =10.

(2)

A lot of studies have shown that the complex
Ginzburg-Landau equation {1) possesses a rich variety of
solutions involving the plane waves, shock and solitary
waves, the hole, periodic and spiral solutions, etc.1~8 In
particular, the spiral solutions play an important role in
many branches of physics, such as the fluid dynamics, nen-
linear optics, chemical and biological dynamics, atc.[0~12]
However, up to now no cne has found analytically the spi-
ral solutions of the complex Ginzburg-Landau equation.

In this paper, the spiral solutions of the two-
dimensional complex Ginzburg-Landau equation (1) are
obtained by making use of the wave-packet theory and a
relatively simple methad.

2 Envelope Solution
We assume that the envelope sclution of Eq. (1) in

polar coordinates (p, 8) is of the form

u(p, 0,) = a{R) [ Krtmi-utsR)]

3

where K is the wave number, m is the arm number of
spirals, w is the angular frequency, and

R=¢elp—cgt), ¢, =const,

{4)

¢ < 1 is a small parameter. Both the amplitude ¢{R) and
the shift of phase ¢(Jt) are real functions. In fact, the
envelope solution (3), in which o are connected only with
R, implies that the dense spiral (K p 3 1) with smali arm
number (m < 4} is considered.

Substituting Eq. (3) into Eq. (1) and equating the real
and imaginary parts to zero, respectively, we have

d
ajw— o K* + B + ¢ [(cg — 2&1K)a,d—-;:

~ 2ok 5]+ e g o5 ]
—afy+azK? — Bya?] + E[—ZagKa%%
ot el (2]

respectively. In the following sections, we look for the
exact solution in the first two orders of Eqs (5).

3 Plane Wave Solution

Setting € == 0, which corresponds to that the variations
of & and ¢ with R are disregarded in Egs (5), we obtain
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the following plane waves sclutions Equation (8a) can be rewritten as

w—m K+ /a? =0, (Ba) da dR

Y+ 0eK? = fha® = 0, (6b) alp +ga7) ~ B¢’ o
from which the dispersion relation and amplitude can be  where
determined. P = (why — 761} — (%2 + aady) K7, (11a)
4 Spiral Sclutions g = Bl + Baby . (11b)

Neglecting the terms with €* in Eqs {(5) yields

2&2K(e:—;) - (g — 2m K) (eaj—?;)

=a{w — ey K* + £1a%), {7a}
{c; — 201 K) (e::—;) + 202}{(60,5%)
= —-G('f + ang - ﬁzﬂz) . (Tb)

Equations (7) constitute the systems of the first-order
equations in e{R) and ¢(R), we can obtain the following
relations

Equation (10} can be integrated to give

—ie[p/‘g‘)(R'”")sechsg(R— Ro), a* < -Z,

2 €
al= 1

(12)
~E owrtatr-roleee, PR RY), o n —E,
29 de q

where Ry is an integration constant. Equation {12) rep-
resents the shock wave solutions for the amplitude of the
two-dimensional Ginzburg-Landau equation {1}, which is
illustrated in Figs 1 and 2.

Equation (8b) is rewritten as

da .
O em | = boa{w — o, K? + B a?
( dR) 2 (w (23] Bia ) 6&;—% =r+sa2 (13)
—braly + azK? - ﬂzaz) s {8a) .
a6 with
_ _ 2 2
5(cagg) = — Folo ~ K + pro) r = —(wéy +¥05) + {0161 — 0br) K2, (142)
— Saly + 6 K% — fza?) (8b) & = —(Bdy - f2ds). {14b)
easily by the elimination with Substituting Eq. (12) into Eq. (13) and then integrating
Si=c-2mK, S2=2mK, §=6+5. (9 | yield
1

which are the solutions for the shift of phase of complex

Ginzburg-Landau equation (1). They show that thereisa

spiral wave relation between ¢ and R, furthermore, when

R — +oo, there is an Archimede spiral between ¢ and R.
Equation (8a) divided by Eq. (8b) yields

da p+ga’

adp  r+sa?’
which is a differential equation of ¢ and ¢ in the polar
coordinates {a, ¢} and can be integrated to give

(16)

\qa2|1"/2?|p + qa’2|(3;’q4/p)f2 = g? 0 (17)

where ¢ is an integration constant. When s/g—r/p =0,
equation (17} can be reduced ko
a= |qi—l/2 gPl@—da)/r (18)

which represents a spiral and is illustrated in Fig. 3. Thus
equation {17) denotes the spiral wave solutions of the com-

— (r - ﬁs) (R— Rg) — % In[el®P/ala-sa 4 ] 42 ——‘zv .

L P — B — S prelee/sair-re _ 2, P
(r qs)(R Ry) qun[e 1], oa*> o

plex Ginzburg-Landau equation {1},
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Fig. 1 Shock wave solution for a? (p < 0) under the
condition of a? < —p/q.
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Fig. 2 Shock wave solution for o® under the condition
of a? > —p/y.

Fig. 3 Spiral wave solution beiween a and 8.
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