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ABSTRACT

A simple shallow—water model on an equatorial f—plane is employed to investigate the nonlinear equa-
torial Rossby solitons in a mean zonal flow with meridional shear by the asymptotic method of multiple
scales. The cubic nonlinear Schrddinger (NLS, for short) equation, satisfied for large amplitude equatorial
envelope Rossby solitons in shear basic flow, is derived. The effects of basic flow shear on the nonlinear

equatorial Rossby solitons are also analyzed.
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1. Introduction

In the last decades, the theory of equatorial waves has become the conceptual corner-
stone for the equatorial atmospheric dynamics and provided a dynamical framework for
much of our understanding the slowly evolving, meteorologically significant large—scale
phenomena in low latitudes, The equatorial waves have been used for various purposes, es-
pecially in explaining some fundamental features of tropical climate, The phenomena that
have been explained by using the equatorial wave theory include the Walker circulation (Gill,
1980; Lim and Chang, 1983), the low—frequency Madden—Julian oscillation (e.g., Lau and
Peng 1987; Wang and Rui, 1990), and the ENSO (Lau and Shen, 1988). However, in the ap-
plication of the equatorial wave theories noted above, the impacts of the atmospheric basic
state on the structures of equatorial waves need to be well understood and have been the sub-
ject of a number of studies (Boyd, 1978; Zhang and Webster, 1989). On the other hand, the
nonlinear theory of equatorial waves has also received considerable attention (Domaracki
and Loesch, 1977; Ripa, 1982; Boyd, 1980, 1983, 1984, 1985). Boyd (1980) applied the meth-
od of multiple scales to the primitive equations to show that long, small amplitude Rossby
waves evolved in longitude and time according to the nonlinear Korteweg—de Vries (KdV) or
modified KdV (mKdV) equation. Kindle’s (1983) numerical experiments showed that general
wind stresses readily excite solitons and the strong El Nifios normally generate a train of two
or three solitary waves. Kindle’s results add credibility to the purely analytical theory of Boyd
(1980) and raise some questions, too. For example, the powerful 1982 El Nifio may generate
very strong Rossby solitons whose size raises one obvious question is the obvious uncertainty
as to whether the analytical theory of Boyd (1980), which was derived through a small
amplitude perturbation expansion, can be legitimately applied to the moderate to large
amplitude solitary waves created by such a powerful El Nifio. Extending the perturbation
theory to the next highest order is the simplest analytical way of resolving this uncertainty
(Boyd, 1985). However, for KdV— or mKdV—type Rossby solitons, the long—wave
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approximation (L, / L, < 1) must be required. In fact, in the real atmosphere, especially for
large—amplitude Rossby waves, the long—wave approximation sometimes may be incorrect.
However, for the envelope Rossby solitons depicted by the NLS equation, the long—wave ap-
proximation is not necessarily required. In this case, the envelope Rossby soliton model may
be more appropriate than the KAV or mKdV soliton models studied by Boyd (1980). On the
other hand, Boyd (1980, 1983, 1985) assumed that the mean state was one of rest, thus ig-
noring mean currents. That is obviously unrealistic, although he believed that this was justi-
fied both by the complexity of the theory even without mean flow and by the fact that weak
shear will not qualitatively alter most results. To be sure, a weak mean current will change the
latitudinal structure, and add some corrections to the speed and amplitude, furthermore, in
this paper, it will be shown that the shear mean flow plays an important role in the formation
of equatorial Rossby envelope solitons unless the shear is so strong as to create critical lati-
tudes or instability.

The envelope Rossby solitons in the barotropic shear and uniform flows were first inves-
tigated by Benney (1979) and Yamagata (1980), independently, Afterward, Luo (1991) tried
to use this envelope Rossby soliton to explain atmospheric blocking highs observed in the at-
mosphere. In order to tackle the questions arising from the observations and theoretical stud-
ies in particular, and to gain a better understanding of tropical atmospheric dynamics in gen-
eral, it is necessary to investigate further the effects of the varying basic states upon the
equatorially trapped nonlinear Rossby waves in the atmosphere, The purpose of this study is
to examine the effects of basic zonal flows on the large—amplitude equatorial Rossby waves.
In the next section, the problem of nonlinear equatorial Rossby waves in a mean zonal flow
with meridional shear is resolved by the asymptotic method of multiple scales and the NLS
equation is derived. The final section is a summary and discussion,

2. Derivation of the NLS equation

Charney (1963) pointed out that, in the absence of condensation tropical motions are
quasi—horizontal and quasi—non—divergent. To keep the discussion as simple as possible, we
consider only a simple model equation, important, however, in describing in an idealized way
the dynamics of large—scale flows instead of dealing with the complicated, full set of primitive
equations. The governing equation is the quasi—geostrophic potential vorticity equation of
shallow—water model on an equatorial f—plane, This gives, in standard notation,

S _Wo WO _BY )\
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where x and y are the local Cartesian coordinates pointing east and north, respectively. f§ is
the northward gradient of the planetary vorticity f, cf, is the square of velocity of pure gravi-

ty waves, i is the stream function of the two—dimensional motion related to the horizontal
velocity components by the definitions
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and the Laplacian operator V/* is defined by
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Note that the potential vorticity of Eq.(1) is quite different from midlatitude
quasigeostrophic potential vorticity g= f+ VZI/I— A2y (where f= fot By, A= fy/ ¢y),
which is widely used in midlatitude atmosphere dynamics studies. Eq.(1), which is most readi-
ly and systematically achieved by introducing nondimensional coordinates and using formal
asymptotic expansion techniques (Gill, 1982; Liu, 1990), filters out the high—frequency
inertia—gravity waves, mixed Rossby—gravity waves as well as Kelvin waves. As a result, the
analysis of Rossby waves is greatly facilitated, Since we mainly discuss the wave motions near
the equator or y ® 0, the appropriate boundary condition is that v vanishes as y— + ©, or
equivalently that

Qﬁ: -
7 =0, as yoE®, €Y

which is an approximation of the homogeneous boundary condition on a sphere (ie. v= 0 at
the poles) (Lindzen, 1967). In the actual atmospheric situations there is upper limit to |y|, the
position of the pole and boundary conditions should be different ones. However, approxima-
tions in the boundary conditions have little effects on the solutions of lower modes. It is con-
venient to convert Eq.(1) into non—dimensional form by taking the following scaling rules:

t= (ﬁLL)t , xy)=Lx.,y.), v=ULW. 5)

where the non—dimensional variables are marked by an asterisk, L= y ¢, / § is the equator-
ial Rossby radius of deformation and U the characteristic velocity scale. Substitution of (5)
into (1) yields

L+ i+ -0, ©

where

dadb _ dad .,
9agh_9a% | = U P=v-t, )

J@b)= 5% " ayox =3

J is the Jacobian of (a,b),¢ is the equatorial equivalent of the conventional Rossby number,
Now that the non—dimensional form of Eq.(1) has been derived, the subscript asterisks can be
dropped for simplicity. Here, and in the rest of the paper, expressions are written in
non—dimensional form and all symbols stand for dimensionless quantities. It should be point-
ed out that in Benney (1979), the weak shear was chosen to be a perturbation parameter so
that a NLS equation, satisfied for large amplitude Rossby wave in the shear basic flow, can be

derived by the asymptotic method. But in Yamagata (1980), the local Rossby number was

considered as a perturbation parameter. Here, if U =10 m s, c(2) =10° m? s, then ¢~ O

(1072) is the small-amplitude parameter and naturally is used as the perturbation parameter,
The nonlinear problem posed by (6) may be developed in the nondimensional parameter ¢
which is a measure of the magnitude of nonlinear products. Attention is focused on systems in
which nonlinearity and dispersion are of the same order of magnitude, without a loss of gen-
erality, long time and space scales are incorporated in (6) by the derivative transformations

L0, 0 a0 88, 0, 4
5t %r, Tfer, 0 ax ox T %x, " %ax, ®

where long time and space scales are defined as
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T,=e, T,=¢t X, =ex, X,=¢x. ©)

Substitution of (8) into (6) yields

{(a+a—‘1)+ (B i)

a T T, ox, ' % ax, /3
(5t o zaiﬂ}"[ +2‘—aAlle
ro(Sg 2ﬁ}”(—2)+235;5@(2+ ]
+<%+ a)"( +sm)¢ 0. (10)

The basic state upon which a wave perturbation is imposed is a time—independent zonal flow
(with a overbar) independent of the x coordinate. In the presence of a small perturbation (de-
noted by a prime) the total stream function is

Y

y
- j Z(s)ds+

= — J u(s)ds+ Zs ¥, (xp,6X,,X,,T,,T,) . 1)
m=1

In the above expression, the perturbation stream function ¥’ is assumed to have uniformly

valid asymptotic expansions of the power series. The choice of expansions (11) and (8) is

based upon the uniform occurrence of O(¢) nonlinear products in (6) and the desire to match

anticipated nonlinear forcing with long time and space scales in the same power of ¢. Substitu-

tion of (11) into (10) yields the system of equations
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and so forth, where the operator . () is defined as
_ _Q_ —i =2 —_ 0
#( )= (az+ uax)V + (1= @) (15)

Obviously, ¥, satisfies the linear system (12), which by hypothesis has a solution
¥, = AX,,X,;T,,T,)®, )explitkx— wt)]+ c.c. (16)

where the wave amplitude A4 is assumed to be a smooth slowly varying function of the long
time and space scales, ®, (y) describes the latitudinal modal structure of the packet, k is the
zonal wave number, w is the wave angular frequency, c.c. is an abbreviation for “ complex
conjugate” of its preceding term. Substituting (16) into (12) leads to the following equation
for @, :

— 7
I:Ll.}_]_c_(.l_;u_)]q)l:() , 17
(6
where the operator L, is defined by
_d 2 2
Li=35-k -y, (18)
dy

and & is the Doppler—shifted frequency, which will be determined as the eigenvalue of
Eq.(17), is related to w by the Doppler relation

W= ku— o= k(u—c) . (19)

Eq.(17) under the boundary condition @, ]y_, 4+ = 0 poses a standard Sturm-—Liouville
problem. The effects of zonal flows on linear equatorial trapped waves were treated in detail
by many researchers (e.g. Zhang and Webster, 1989). If the effects of zonal flows are neg-
lected (i.e. u= 0), then (17) reduces to an eigen—value problem of the so—called Weber equa-
tion, just the same as the Schrodinger equation for a simple harmonic oscillator, The solutions
of Eq.(17) exist if and only if the coefficients satisfy the condition

- k*= Z’f,= 2n+1  (n=10,1,2,), 20)

where 7 is the latitudinal mode number. Eq.(20) is the eigenvalues of (17), and the corre-
sponding eigenfunctions are

®,()= c,,H,,(y)exp( - %yZ) (1= 0,1,2,%++) , Q1)

where C,, is an arbitrary constant specifying the amplitude of the nth mode and H, (y) is the
nth order Hermite polynomial. The dispersion relationships for the frequency w and phase
speed ¢ of free equatorial Rossby oscillations for given n are easily derived from Eq.(20):

k 1

- =—— =0,1,2,) . 22
E+oamt1’ ¢ k*+ 2n+ 1 (n=0,1,2,) @

Obviously, this is a special case of the Matsuno (1966)’s results. it can be seen that the
high—frequency inertia—gravity waves, mixed Rossby—gravity waves as well as Kelvin waves
have already been filtered out in Eq.(1). For long Rossby waves for which k~ 0(¢'/?), ex 1
it follows that

c(k,n)— c(0,n)= O(e) . (23)
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In other words, waves whose wavenumbers differ by O(1) will have phase speeds which differ
only by a small amount, Eq.(23) can be taken as the mathematical definition of “ weak”
dispersion, It implies that even if a packet of long Rossby waves is not sharply peaked in
wavenumber space about some central packet wavenumber k, the packet nonetheless will
spread very slowly, on time scale T~ O(¢~ '), because its constituent waves are all traveling
at approximately the same speed. If the amplitude of the packet is also O(e), then one can bal-
ance the nonlinearity against the dispersion to create the singly—humped soliton. In Boyd
(1980), it was shown that the zeroth—order equations describe linear, nondispersive Rossby
waves, at the next order, the effects of dispersion and nonlinearity enter simultaneously and
the KdV or mKdV equation is obviously derived as a long—wave approximation, With this
approximation, high—frequency inertia—gravity waves, mixed Rossby—gravity waves as well
as short Rossby waves are filtered out, therefore the KAV or mKdV is a consistent description
of ultra—long Rossby waves of small amplitude, However, the assumption of long—wave ap-
proximation depends on not only the scale of motions, but also the ratio of the meridional
scale to the zonalscale (ie.,, L, / L, < 1).

The e—order solution, therefore, fixes the frequency &, even though -A4is still
undetermined, To this order, the solution is an arbitrary superposition of linear (¢— 0)
Rossby waves, at the next order, the effects of nonlinearity enter, Insertion of (16) into (13)
and using (17) yields

£@a)= - [(;TA+ T L0+ (1= = 2k, 2 ]exp[z‘(kx— o)

- ik(@,diLl@1 dd‘ L0, ) 4% expl2itkx— wn)l+ cc .
= ([ 94 o4 o
=<, ®, (6T + C‘aX )exp{z(kx wt)]
+ ikQ ()4 explRi(kx— wi)l+ c.c. | (24)
where
_ 2k2 (u— c)2 1— u”
cl - l__ s Q(V) ldy ( ) . (25)

Solutions of the homogeneous part of (24) subject to (4) are identical to the O(e) solutions
described by (17) in their (x,y,t) functional structure. Inspection of the linear inhomogeneous
terms of (24) reveals that for Y/, there exists a resonant forcing arising from the introduction
of multiple scales, That is, the first term on the right—hand side of (24), which has the struc-
ture of the free Rossby waves packet, is resonant with the linear operator of the left—hand side
of (24). Nonlinear inhomogeneous terms may also be resonant under special conditions, The
assumed validity of (11) is assured by demanding that inhomogeneous terms of (24) are
orthogonal to the solutions of the homogeneous equation. Orthogonality exists when the fol-
lowing condition is satisfied:

+®
hmmf J‘ f (¥, linhomogeneous terms of (24)ldxdydt= 0 . 26)

For the purpose of integration, the amplitude coefficients of A4 are held constant during inte-
gration over (x,y,t). The effect of this strategy is to force 4 to vary in a manner making (26)
true, in this way, the presently unknown functional dependence of 4 will be determined at the
next higher order approximations. Therefore, using the orthogonality condition of the
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left—hand side operator to avoid secular growth, we obtain the following equation

6A JA
aT] +c =0

£ aXl H (27)

where

_ .. h
Cg c+—I— ,

_ 2 + o0 2 + © 1_ u 2
I,=2k ®ldy , I= 5 ®rdy . (28)
- - (u— c)
It is clear from (27) that for the O (¢?) problem, the amplitude A propagates at the group ve-
locity. The remaining inhomogeneous terms on the right—hand side of (24) are nonresonant
and the following particular solution is yielded:

LW,)= ikQ()A expl2i(kx— wt)]+ c.c. , (29)
we assume that (29) has the following wave—like solution
wz = B(Xl ,Xz ;Tl ’TZ )d)z (V)CXp[Zl(kx— wt)]+ C.C, (30)
Substitution (30) into (29) yields the equation to @,
— 2
B[L2+M}¢2=%M, G1)
2(u— c)
and its boundary condition @, |y_’ 0= 0 where the operator L, is defined by
d 2 2
Ly=—5— Qk\¥—y*. 32
2 dy2 y (32)

Obviously, B and 42 are not two independent variables, B is related to 4> by Eq.(31). For
simplicity, we assumed that

B= 4% . (33)

Substitution (16) and (30) into (14) results in the following solution:
2
W)= - {I:(_a—i+ EaA )L + (11— u”)a—A+ 2ik< o4 + za,aA )

or, T “ox, X, aT,ox, « '“%x,
do
+ i@+ 2km—2}b, — kA" B|:<<D1-‘—;-i—+ 25 L)L, o,
d 49, o
(2(I>2d + —= 2 )le)l]}exp[z(kx o)l+ ce+ 0O (34)

where 4 denotes the complex conjugate of 4, [] stands for those terms which are associ-
ated with exp[+ 2i(kx— wt)] and exp{+ 3i(kx— wt)]. Using (17), (27), (31) and (33), then
(34) can be rewritten as follows:

1— [ 04 04, . u—
LW.)= + +.i + 2¢. — ‘)
Ws) {a—c[an “ox, T3 (e 20,3 ox? }D‘

W Od (0 \, _Q 4% ] 2 }
+1k[ (L_l—c) (u—c) dy 41" 4
x explitkx— wt)]+ cc.+ 0O . (35)

It is not necessary to solve for ;. Instead solvability conditions associated with (35) will es-
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tablish equations which determine the evolution of the envelope amplitude and the mean
flow. Obviously, the inhomogeneities on the right—hand side of (35) may be evaluated in
terms of the lower order solutions and again those inhomogeneities contain terms which are
homogeneous solutions of the operator on the left. To avert resonance and hence to keep our
expansion (11) uniformly valid in time, the inhomogeneity must be orthogonal to the homo-
geneous solution, This solvability conditions determine that the free amplitude 4 must satisfy
the following NLS equation:
2

( 0A 0A ) " “a ,;1

1

i + + 8l41*4=0, (36)
X

oT,  ‘edx,

where

I I *C(e+ 2¢,— 3%
a= = 5=73, 12=kf (—_‘——)d)fdy,

w u— ¢

R RS W AP e, <I>IQd<I>1]
Iankf—w(ﬁ—c)[Z dy(ﬁ—c)+(17_c) dy dy , 37)

where « and & are the so—called dispersion and Landau coefficients respectively. In the above
derivation, we have assumed that any critical level does not exist, i.e. u# ¢. The set of
Eqs.(17), (36) and (37) determines completely the modal structure of a nonlinear equatorial
Rossby envelope soliton in a shear basic flow with no critical level,

Note that the dispersion and Landau coefficients « and J vanish as k— 0, this indicates
that the ultra—long, nondispersive (c, = ¢, see (22) and (28)) Rossby waves cannot be des-
cribed by the NLS equation (36). In the limit k— 0, the proper replacement equation is the
KdV or mKdV equation of Boyd (1980). If we introduced the following coordinate transfor-
mation defined by Jeffrey and Kawahara (1982):

1
T=T,, X= ;(Xz— ¢ T)=X,—c,T,, (38)

then Eq.(36) can be transformed into the canonical form

4 | 24 2 ,_
10T+“0X2 + 6/4]°4=0 . (39)

3. Discussion and conclusions

In this paper, the asymptotic technique is used to investigate nonlinear equatorial Rossby
waves in a mean zonal flow with meridional shear by employing a simple shallow—water
model on an equatorial f—plane. The nonlinear NLS equation (39), which describes the
amplitude evolution of the equatorial Rossby solitons, and also embodies the main character-
istics of nonlinear equatorial Rossby solitons in a shear basic flow, was derived. Because the
coefficients o and J are related to the states of basic flow u, if there is no shear in the basic
flow (i.e. u=constant), then Q = 0 (see (25)) and 5= 0 (see (37)), and the nonlinear terms in
the nonlinear NLS equation (39) disappear. This indicates that a necessary condition for the
formation of equatorial envelope Rossby solitons is the nonlinear interaction between the
equatorial Rossby waves and the shear basic flows,



426 Advances in Atmospheric Sciences Vol, 18

The NLS is completely integrable (Zakhrov and Shabat, 1972). When the signs of the
dispersive and nonlinear terms in the NLS equation (39) are opposite (x5 < 0), the asymptotic
solution is simply a wavetrain qualitatively similar to the linear solution, But the most striking
difference is that the nonlinearity also acts to widen the wave packet, giving “ defocusing” or
“superlinear” dispersion in the sense that the wavetrain spreads out more rapidly than in a
linear theory. Instability is possible if and only if the Landau constant § and the dispersive
coefficient « in the NLS equation (39) are of same sign (6 < 0)—which is also the necessary
condition for solitary waves. In this case, the asymptotic solution to the NLS equation con-
sists of a wavetrain plus a finite number of envelope solitary waves. For the special case of the
single soliton, this gives the two—parameter family of traveling single solitons,

AXT)= |2 MsechM (X~ 20 Texpllex— (&> — MOT]} (40)
where the amplitude—related parameter M, and velocity—related parameter & are independent
parameters and are determined by the initial condition. Ablowitz et al. (1974) showed that no

+
solitons will form if f | 4(X,0)|dX < 0.904. This is in marked contrast to the KdV equation

where at least one soliton will form no matter how small the initial disturbance, so long it is of
the right sign. Substituting (40) and (16) into (11), we obtain the stream function of the equa-
torial Rossby envelope solitons

Y= — fy a(s)ds+ /7;5—“ MsechM(x— V)@, ()expli(Kx— Q1) . @1)
where
V=c,+ 2, K=k+e, Q= otetc,+a@—M). “2)

From (28) and (37), we also note that the existence of envelope solitons also requiring the fol-
lowing condition must be met:
t® =
I= J 1ou prg0. 43)
—w (U= c)

This indicates that the shear is not so strong as to create barotropic instability (Kuo,
1949). In fact, if the instability occurs, the permanent shape of solitons cannot be maintained,
It is not difficult to see that the dipole envelope Rossby soliton exhibits an isolated dispersive
structure having a shape. We also note that the condition k— 0 is not required in deriving the
envelope soliton solution, However, for KdV or mKdV soliton the condition k— 0 must be
required because the long wave approximation is used. For this case, the KdV or mKdV
soliton exhibits a nondispersive isolated structure of sech?shape (Malguzzi and
Malanotte—Rizzoli, 1984), Without forcing, the KdV— or mKdV—type soliton cannot proper-
ly model the physical mechanism of the equatorial modons breakdown, In the real atmos-
phere, because the nonlinearity exists, the envelope amplitude of Rossby waves is not usually
a constant. Especially for large—amplitude Rossby waves, the long—wave approximation
sometimes may be incorrect. For an envelope soliton the long—wave approximation require-
ment is not necessary, Therefore, the envelope soliton studied here is physically more reason-
able for the westward—traveling modons events of the KdV soliton (Boyd, 1985). Moreover,
numerical experiments on the Rossby solitons evolution and application of the model pro-
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posed in this paper to numerical simulations of some coherent flow structures in the tropical
atmosphere will be published elsewhere.
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