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Abstract In this paper, some examples, such as iterated functional systems, scaling equation of wavelet transform,
and invariant measure system, are used (o show thal the Lhomoclinie orbit solutious cxist in the linctional cquations too.
And the solitary wave exists in gencralized dynamical systems and functional systems.

PACS numbers: 05.45.-a

Key words: functional equation, scaling equation, solitary wave, homoclinic orbit

1 Introduction

We have shown that the solitary wave solutions exist
in conservative or dissipative partial differential equations,
where the sclitary wave corresponds to the homoclinic
orbit for ordinary differential equations.l' % Because we
want to know whether homoclinic orbit can exist in func-
tional equations, we will show in this paper that the ho-
maclinic orbit exists in iterated functional systems, scal-
ing equation systems in wavelet transform and invariant
measure Systerns.

2 Iterated Functicnal System

Early in 1989, Prof. Haol® pointed out that the he-
moclinic orbit exists in iterated functional systems.

The logistic map

Tyl = f(-'zn} =dwa(l - ), (1)

as shown in Fig. 1 obvicusly has two unstable fixed points
z" =0 and z* = 3/4. Starting from z = 1/2, twice itera-
tion will make it arrive at the unstable fixed point z* = 0,
j.e., it leads to definite number sequence

1/2,1,0,0,0, ... . (2)

In other words, the forward iteration falls into the unsta-
ble fixed point z* = 0. The backward iterations, i.e. from
Tpty tO Zn, Teturn to the same fixed peint ™ = 0 too.

Therefore, the iterative sequence from z = 1/2 forms
as follows:

0,0,---,1/2,1,0,0. {3)

This is a homoclinic orbit which approaches z* = 0 as a
limit when n — oo, In Fig. 1, it is denoted by thick lines
with arrows. The points 1/2 and 1 are called homoclinic
points, which are immersed inte the stable set of #* = 0
and the unstable set of z* = 0, and they are homoclinical
toz* =0.
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Fig. 1 The homoclinic orbit in map Eq. (1).

3 Scaling Equation for Wavelet Transform
Wavelet, transform is a powerful multi-resolution anal-
ysis tool.[" 8] The father wavelet or scaling function @(t)
has one particularly desirable property: it is 0 everywhere
except a small closed interval.
For example, Haar father wavelet is

1, o0<t<l1,

50~ { @

0, otherwise |

as shown in Fig. 2. Because #{i) approaches to O as
t — Fo0, then ¢t} is a homoclinic orbit.
Tt is easily proved that ¢(¢) satisfies the following scal-

ing equation (or two-scale relation):[g]
B(t) = B2t} + B2t — 1) (5)

From Fig. 2, we see that the left-hand side of Eq. (3) is
a square wave, the scale of the first term ¢(2t) on the
right-hand side of Eq. (5} is the half as large as ¢{t}, and
the second term @(2¢t — 1) is the result that ¢{2t) shifts
rightwards by half unit.
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Fig. 2 Haar father wavelet.

In addition, sealing fuuction for tent map

L, 0<t<1,
Pty = ¢t -2, 1<t«<2, (6)
0 otherwise ,

1
is also a homeoclinic orbit. It is the solution of the following
functional equation

1, 1
B = 24020+ 91— )+ L2 (D)
The quadratic Battle Lemarie scaling function
Ls
= 0<t<l,
5t =
2 3 .
- 12tz
Plt) = , 2 (8)
5&—3?, 2<t <3y,
a, otherwise

15 a continuous and differentiable homoclinic orbit and
satisfies the following functional equation

By = o020+ S p(at— 1) + 5602t~ 2) 4 19021 -3).(9)

4 Invariant Measure of One-Dimensional Map

If s{x} is a one-dimensional map in unit interval [i), 1],
then density evolution equation of the probability den-
sity function f{z) for the successive iferated sequence xp,
s(20), 82 (7o}, ... can be written as/'®1

d

Pflz)= o ‘/;7]([0‘1.]) flu)dn, (10}

where P s called Frobenius Perron operator, 75 s an
inverse map of s.
For example, 1he tent mup

Za, 0
S = {2(] —a). L

2

14

, 1 .
<G, (11)
<1,

[ A

T

whose lovariant measure f(x) computed from Bq. (10} s

- (@ e G ) o
that s, f(z) satisfies the functional cquation
o=l @G- o

which is similar to Eq. (3). The scale of f(x) is the half
of f{x/2). The solution of Eq. (13} is

s =

0, otherwise

0<xr<l,

(14)

which is a homoclinic orbit too.
In addifion, the dyadic transformn is

2, 0<z <y,
S(x) = . (15}
20-1, ;5w <l,

whose density function f{x) is the evolution equation

1 vz 1. 7o 1 .
Pray =1 (3) + 355+ ) (16)
ie., flz) satisfics functional equation
1 s J O |
=515+ 505+ 3) (17)

The solusion of Eq. {17) is
J() { N

() =
0,

whicli is also a homoeclinic orbit.

8o, it is obvious that there exists a homoclinic orbit
among the iterated funcrional systemns, the scaling equa-
tion systems in wavelet transform and invariant meagsure
systems. It is a generalized homoclinic orbit.

0<r<l,

(18)

otherwise |
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