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Abstract From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied
to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new
periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can
be got under their limit conditions.
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1 Generalized Transformations from sine-
Gordon Equation

The sine-Gordon equation reads

utt − c20uxx + f2
0 sinu = 0 , (1)

which can be solved in the following frame

u = u(ξ), ξ = x− ct , (2)

where c is a wave velocity. Then equation (1) becomes

(c2 − c20)
d2u

dξ2
+ f2

0 sinu = 0 . (3)

Integrating this equation, we get( dω
dξ

)2

+
f2
0

c2 − c20
sin2ω =

H

2
, (4)

where H is integration constant, ω = u/2. There are two
cases to be considered.

Case 1 c2 > c20
Set λ2

0 = f2
0 /(c

2 − c20) and H = 2λ2
0m

2, equation (4)
can be rewritten as

dω
dξ

= λ0

√
m2 − sin2ω . (5)

Equation (5) is the first generalized transformation which
we get from the nonlinear sine-Gordon equation.

Case 2 c2 < c20
Similarly, we can get

dω
dξ

= λ1

√
m′2 − cos2ω , (6)

where λ2
1 = −λ2

0 and m′2 = 1 − m2. This is the sec-
ond generalized transformation we get from the nonlinear
sine-Gordon equation.

In Ref. [1], based on the sine-Gordon equation, Yan

got a transformation

dω
dξ

= sinω . (7)

We can see that the transformation (7) is just a special
case of transformation (6) when ‘+’ is taken in Eq. (6)
and λ1 = 1, m′2 = 1.

2 A New Approach to Solve Nonlinear Equa-
tions
In the following, we will introduce another method

based on the transformations given in the former section.
Consider a given nonlinear wave equation

N(u, ut, ux, utt, uxx, . . .) = 0 . (8)

We seek its wave solutions in the frame of Eq. (2), then
equation (8) can be rewritten as

N
(
u,

du
dξ
,
d2u

dξ2
, . . .

)
= 0 , (9)

and u(ξ) can be expressed as a finite series of sinω or
cosω, i.e. the ansatz

u = u1(ξ) =
n∑
j=0

ajcosjω , (10a)

u = u2(ξ) =
n∑
j=0

bjsinjω , (10b)

where ω satisfies transformation (5) or (6), then

d2ω

dξ2
= −λ2

0cosω sinω , or (11a)

d2ω

dξ2
= λ2

1cosω sinω . (11b)

The highest degree of Eq. (10) is

O(u(ξ)) = n , (12)
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then the highest degree of du/dξ can be taken as

O
( du

dξ

)
= n+ 1 , (13)

and

O
(
u

du
dξ

)
= 2n+ 1, O

( d2u

dξ2
)

= n+ 2 ,

O
( d3u

dξ3
)

= n+ 3 . (14)

Thus we can select n in Eq. (10) to balance the highest
order of derivative term and nonlinear term in Eq. (9).
Then substituting Eq. (10) into Eq. (9), determining the
expansion coefficients and other undetermined constants,
combining the results from the transformation (5) or (6),
one can get exact solutions to the given nonlinear equa-
tions.

We know that when m′ → 1, the transformation (6)
degenerates as the transformation (7), so the solutions got
from the above expansion may cover the results obtained
by sine-cosine method given by Ref. [1].

3 Applications
In this paper, we will demonstrate the above approach

on two examples: KdV equation and mKdV equation.

3.1 mKdV Equation

The mKdV equation reads

ut + αu2ux + βuxxx = 0 . (15)

Substituting Eq. (2) into Eq. (15) yields

−c du
dξ

+ αu2 du
dξ

+ β
d3u

dξ3
= 0 . (16)

Integrating this equation yields

−cu+
α

3
u3 + β

d2u

dξ2
= C0 , (17)

where C0 is integration constant.
Considering Eqs. (12), (13), and (14) to balance the

highest order of derivative term and nonlinear term in
Eq. (17), we can get

n = 1 , (18)

so the ansatz solution of Eq. (15) in terms of cosω is

u = a0 + a1cosω , (19)

and ω satisfies transformation (5), we know that

du
dξ

= −a1sinω
dω
dξ

, (20)

d2u

dξ2
= −a1sinω

d2ω

dξ2
− a1cosω

( dω
dξ

)2

= λ2
0(2−m2)a1cosω − 2λ2

0a1cos3ω , (21)

u3 = a3
0 + 3a2

0a1cosω + 3a0a
2
1cos2ω + a3

1cos3ω . (22)

So substituting Eq. (19) into Eq. (17) yields

[−ca0 + αa3
0/3− C0] + [−ca1 + αa2

0a1

+ βλ2
0(2−m2)a1]cosω + αa0a

2
1cos2ω

+ [αa3
1/3− 2βλ2

0a1]cos3ω = 0 , (23)

from Eq. (23) setting the coefficients of (cosω)0, cosω,
cos2ω and cos3ω to be zero, we can get the algebraic equa-
tions about a0, a1, C0, and c

−ca0 + αa3
0/3− C0 = 0 , (24a)

−ca1 + αa2
0a1 + βλ2

0(2−m2)a1 = 0 , (24b)

αa0a
2
1 = 0 , (24c)

αa3
1/3− 2βλ2

0a1 = 0 . (24d)

Solving Eqs. (24a), (24b), (24c), and (24d) yields the
following solutions

C0 = 0, a0 = 0 ,

a1 = ±
√

6λ2
0β

α
, c = (2−m2)λ2

0β . (25)

Similarly, the ansatz solution of Eq. (15) in terms of
sinω is

u = b0 + b1sinω , (26)

where ω satisfies transformation (5). The corresponding
solution is

C0 = 0, b0 = 0 ,

b1 = ±
√
−6λ2

0β

α
, c = −λ2

0(1 +m2)β . (27)

Actually, setting sinω = m sin ϕ, equation (5) is re-
written as

dϕ
dξ

= λ0

√
1−m2sin2ϕ . (28)

Notice that

θ(τ) =
∫ Ψ

0

1√
1−m2sin2ψ

dψ

=
∫ τ≡sinψ

0

1√
(1− y2)(1−m2y2)

dy (29)

is called the first kind Legendre elliptic integral, where m
is a parameter which is known as the modulus. The in-
verse function τ ≡ sinϕ is called the Jacobi elliptic sine
function which is represented by

τ = sinψ = sn θ . (30)

So from Eq. (28) we know that the transformation (5)
admits the following solution

sinω = m sn (λ0ξ,m) . (31)

Similarly,
√

1− τ2 and
√

1−m2τ2 are defined as the
Jacobi elliptic cosine function and the third kind Jacobi
elliptic function, respectively. They are expressed as√

1− τ2 = cn θ,
√

1−m2τ2 = dn θ , (32)
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respectively. There are relations between sn θ, cn θ, and
dn θ

sn2θ + cn2θ = 1, 1−m2sn2θ = dn2θ . (33)

Detailed explanations about Jacobi elliptic functions can
be found in Refs. [2] and [3].

Then we get

cosω = dn(λ0ξ,m) . (34)

Similarly, the transformation (6) admits the following
solution

cosω = m′sn(λ1ξ,m
′) , (35)

and then we get

sinω = dn(λ1ξ,m
′) , (36)

where m′ is co-modulus.
Thus the periodic solutions of Eq. (15) are

u1 = a1cosω = ±
√

6λ2
0β

α
dnλ0(x− ct) , (37)

and

u2 = b1sinω = ±
√
−6λ2

0β

α
m snλ0(x− ct) . (38)

And from Eqs. (29) and (33) we know that when
m → 0, snu, cnu, and dnu degenerate as sinu, cosu and
1, respectively; while when m → 1, snu, cnu and dnu de-
generate as tanhu, sechu and sechu, respectively. So the
solutions (37) and (38) degenerate as another two solu-
tions

u3 = ±
√

6λ2
0β

α
sechλ0(x− ct) , (39)

and

u4 = ±
√
−6λ2

0β

α
tanhλ0(x− ct) , (40)

which are shock wave solution and solitary wave solution,
respectively.

3.2 KdV Equations

The KdV equation reads

ut + uux + βuxxx = 0 . (41)

We solve it in the frame (2), so the system (41) can be
rewritten as

−c du
dξ

+ u
du
dξ

+ β
d3u

dξ3
= 0 . (42)

Integrating this equation yields

−cu+ u2/2 + β
d2u

dξ2
= A , (43)

where A is integration constant, here set to be zero.
We suppose the ansatz solution to Eq. (43) is Eq. (10),

where ω satisfies the transformation (5). Substituting
Eq. (10) into Eq. (43) to balance the nonlinear term and
the highest degree differential term gives n = 2.

So the ansatz solution to Eq. (41) is

u1 = a0 + a1cosω + a2cos2ω , (44a)

u2 = b0 + b1sinω + b2sin2ω . (44b)

Substituting the ansatz solution (44a) into Eq. (43)
results in

[−ca0 + a2
0/2 + 2βλ2

0(m
2 − 1)a2] + [−ca1 + a0a1

+ βλ2
0(2−m2)a1]cosω + [−ca2 + (a2

1 + 2a0a2)/2

+ 4βλ2
0(2−m2)a2]cos2ω + [a1a2 − 2βλ2

0a1]cos3ω

+ [a2
2/2− 6βλ2

0a2]cos4ω = 0 . (45)

Setting the coefficients of (cosω)0, cosω, cos2ω, cos3ω
and cos4ω to be zero, we can get the algebraic equations
about expansion coefficients and c

−ca0 + a2
0/2 + 2βλ2

0(m
2 − 1)a2 = 0 , (46a)

−ca1 + a0a1 + βλ2
0(2−m2)a1 = 0 , (46b)

−ca2 + (a2
1 + 2a0a2)/2 + 4βλ2

0(2−m2)a2 = 0 , (46c)

a1a2 − 2βλ2
0a1 = 0 , (46d)

a2
2/2− 6βλ2

0a2 = 0 , (46e)

from which we can get

a0 = c− 4βλ2
0(2−m2) ,

a1 = 0, a2 = 12βλ2
0 ,

c2 = 16β2λ4
0(1−m2 +m4) . (47)

Similarly, substituting ansatz solution (44b) into
Eq. (43) yields

b0 = c+ 4βλ2
0(1 +m2) ,

b1 = 0, b2 = −12βλ2
0 ,

c2 = 16β2λ4
0(1−m2 +m4) . (48)

Thus we can get the solutions to Eq. (41)

u1 = a0 + a2cos2ω

= c− 4βλ2
0(2−m2) + 12βλ2

0dn2λ0(x− ct) , (49)

u2 = b0 + b2sin2ω

= c+ 4βλ2
0(1 +m2)− 12βλ2

0m
2sn2λ0(x− ct) . (50)

When m→ 1, the limit solutions are obtained,

u3 = c− 4βλ2
0 + 12βλ2

0sech
2λ0(x− ct) , (51)

u4 = c+ 8βλ2
0 − 12βλ2

0tanh2λ0(x− ct) . (52)

4 Conclusion
There are many methods proposed to solve nonlinear

equations, such as the sine-cosine method,[1] the homoge-
neous balance method,[4−6] the hyperbolic tangent expan-
sion method,[7−9] the Jacobi elliptic function expansion
method,[10,11] the nonlinear transformation method,[12,13]

the trial function method[14,15] and others.[16−18] In this
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letter, a new approach based on the new transformation
from nonlinear sine-Gordon equation is proposed to con-
struct the exact solutions to nonlinear equations. And it
is shown that the periodic wave solutions obtained by this
method can degenerate to generalized solitary wave solu-

tions, so many new shock wave or solitary wave solutions
can also be obtained. Actually, this method can be ap-
plied to more nonlinear equations, such as (2m+ 1)-order
KdV equations, Kawahara equation, modified Kawahara
equation, Benjamin–Bona–Mahony equation, and so on.
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