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Standard Model of Particle Physics
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Deficiencies
• Hierarchy problem
• Unification
• Flavor

SM is the most precise,
most predictive, 
well tested theory.

New Physics beyond SM
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Neutrino mass: generic mechanisms

6

Weinberg (1979) :
Unique dimension-five operator for Majorana neutrino mass in the SM

Ma (1998) :
Three tree-level realizations
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Neutrino mass: generic mechanisms

6

Weinberg (1979) :
Unique dimension-five operator for Majorana neutrino mass in the SM

Ma (1998) :
Three tree-level realizations do NOT work due to Z2 symmetry: SM (+)

DM (-)

Loop induced
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(+)

(-)
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Neutrino mass
(radiative seesaw)
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★   See-saw scale M ~ TeV

★        is dark matter

Neutrino mass
(radiative seesaw)

exact symmetry, in analogy with the well-known R−parity of the Minimal Supersymmetric

Standard Model (MSSM), hence this term is strictly forbidden. As a result, η0 has zero

vacuum expectation value and there is no Dirac mass linking νi with Nj . Neutrinos remain

massless at tree level as in the SM.

The Yukawa interactions of this model are given by

LY = fij(φ
−νi + φ̄0li)l

c
j + hij(νiη

0 − ljη
+)Nj + H.c. (5)

In addition, the Majorana mass term

1

2
MiNiNi + H.c.

and the quartic scalar term
1

2
λ5(Φ

†η)2 + H.c.

are allowed. Hence the one-loop radiative generation of Mν is possible, as depicted in Fig. 1.

This diagram was discussed in Ref. [3], but without recognizing the crucial role of the exact

Z2 symmetry being considered here.

νi νjNk

η0 η0

φ0 φ0

Figure 1: One-loop generation of neutrino mass.

The immediate consequence of the exact Z2 symmetry of this model is the appearance

of a lightest stable particle (LSP). This can be either bosonic, i.e. the lighter of the two

mass eigenstates of Reη0 and Imη0, or fermionic, i.e. the lightest mass eigenstate of N1,2,3.

3

mν ∼

λ5h
2

16π2

v2

M

MN > Mη

η

When   

L ⊃ hij

(

νiη
0
− #iη

+
)

Nj

+
1

2
λ5

(

Φ†η
)2

+
1

2
MiNiNi

+H.c.
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Mass split

m2(H±) = µ2
2 + �3v

2

m2(H0) = µ2
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The model: scalar potential

where
Z2 - even Z2 - odd

cao



Vacuum stability:

�1 > 0 ; �2 > 0

1 < |�i| < 4⇥
|�i| � 1

The model: constraints

11|�i| > 4⇥ Excluded

Tolerated

�3, �3 + �4 � |�5| > �2
�

�1�2

Perturbativity:

��

�2 < 0
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The model: gauge interaction
g

2 cos θW
Zµ(H0∂µA0

− A0∂µH0)

ig

2
W−

µ (H0∂µH+
− H+∂µH0)

g

2
W−

µ (A0∂µH+
− H+∂µA0)

Need to check their impact on the EW precision test
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Electroweak precision test
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R. Barbieri, L.J. Hall, V.S. Rychkov, hep-ph/0603188
LEPEWWG

SM

mH0

mH0 < mH± < mA0

mH± > mA0 , mH0
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Relic abundance, direct and indirect detection … 
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Dark matter
What we know ...

What we don’t know ...
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Dark matter is material that 
gravitates but does not emit 
very much light. 

Not short-lived

Not baryonic

Not hot: WIMPs

15

Dark matter

Dark energy
74%

Dark matter
22%

Atoms
4%

What we know ...

What we don’t know ...
Its mass and spin

Its interacts with other particles

How many species: one, two or even more?

??? More exciting data in the near future!!!
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How comes very few dark 
matter remain today, 

if it is absolutely stable ?
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 Stage 1: Universe in equilibrium 
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Stage 2: Universe in expansion
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Stage 3: dark matter frozen out
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N � Constant 20

��� ff

N = NEQ � e�
m
T

Relic abundance
Assume the new particle is 
initially in thermal equilibrium:

Universe cools down:

Dark matter freeze out:

(2)

(3)

(1)#



DM annihilation channels
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Relic abundance
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Neutrino mass

exact symmetry, in analogy with the well-known R−parity of the Minimal Supersymmetric

Standard Model (MSSM), hence this term is strictly forbidden. As a result, η0 has zero

vacuum expectation value and there is no Dirac mass linking νi with Nj . Neutrinos remain

massless at tree level as in the SM.

The Yukawa interactions of this model are given by

LY = fij(φ
−νi + φ̄0li)l

c
j + hij(νiη

0 − ljη
+)Nj + H.c. (5)

In addition, the Majorana mass term

1

2
MiNiNi + H.c.

and the quartic scalar term
1

2
λ5(Φ

†η)2 + H.c.

are allowed. Hence the one-loop radiative generation of Mν is possible, as depicted in Fig. 1.

This diagram was discussed in Ref. [3], but without recognizing the crucial role of the exact

Z2 symmetry being considered here.

νi νjNk

η0 η0

φ0 φ0

Figure 1: One-loop generation of neutrino mass.

The immediate consequence of the exact Z2 symmetry of this model is the appearance

of a lightest stable particle (LSP). This can be either bosonic, i.e. the lighter of the two

mass eigenstates of Reη0 and Imη0, or fermionic, i.e. the lightest mass eigenstate of N1,2,3.

3

cao

(1) Generate neutrino mass via the radiative see-saw mechanism

(2) Save the model from the dangerous dark matter direct detection 

Dark Matter



Indirect search of dark matter
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Spectacular line-shape in the DSM 
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LEP Constraints (Z-pole)
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LEP Constraints (Z-pole)
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Impact on the SM Higgs boson search
•  SM Higgs boson production at the Large Hadron Collider
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Impact on the SM Higgs boson search
• Searching strategy of SM Higgs boson highly depends on how it  decays
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Discovery potential of SM Higgs boson @ 
LHC

33



★ Usual decay modes of h are highly suppressed, ~60%,
            which makes the SM Higgs search more challenging. 
★ Large BR(                   ) enables us to search DS in the VBF process
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Impact on the SM Higgs boson search

SM Higgs boson decay branching ratio

mH0 = 50GeV mA0 = 60GeV mH± = 170GeV

h

H0/A0

H0/A0
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Searching dark scalars via the VBF process 
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Searching dark scalars via the VBF process 
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Searching dark scalars via the VBF process 
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Searching dark scalars via the VBF process 
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But  many other new physics models 

can result in this collider signature. 

Other independent measurements are 

needed to confirm the dsdm.
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Dark scalar production and decay
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Dark scalar production and decay
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Cross section of dark scalar pair production
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Cross section of dark scalar pair production
fb

PP → A
0
H
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SM backgrounds
(Intrinsic backgrounds)
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kinematical Distributions
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ū

(a)



41

kinematical Distributions
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Kinematical Distributions
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Kinematical Distributions
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Kinematical Distributions
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Kinematics Distributions
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Discovery potential at the LHC                    
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mH0 , mA0 m!! < 10GeV
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Summary and outlook
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• Dark scalar model provides an interesting solution of 
both neutrino mass and the dark matter. 

exact symmetry, in analogy with the well-known R−parity of the Minimal Supersymmetric

Standard Model (MSSM), hence this term is strictly forbidden. As a result, η0 has zero

vacuum expectation value and there is no Dirac mass linking νi with Nj . Neutrinos remain

massless at tree level as in the SM.

The Yukawa interactions of this model are given by

LY = fij(φ
−νi + φ̄0li)l

c
j + hij(νiη

0 − ljη
+)Nj + H.c. (5)

In addition, the Majorana mass term

1

2
MiNiNi + H.c.

and the quartic scalar term
1

2
λ5(Φ

†η)2 + H.c.

are allowed. Hence the one-loop radiative generation of Mν is possible, as depicted in Fig. 1.

This diagram was discussed in Ref. [3], but without recognizing the crucial role of the exact

Z2 symmetry being considered here.

νi νjNk

η0 η0

φ0 φ0

Figure 1: One-loop generation of neutrino mass.

The immediate consequence of the exact Z2 symmetry of this model is the appearance

of a lightest stable particle (LSP). This can be either bosonic, i.e. the lighter of the two

mass eigenstates of Reη0 and Imη0, or fermionic, i.e. the lightest mass eigenstate of N1,2,3.

3
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Summary
• A significant line-shape of the cosmic gamma-ray 

can be observed at the GLAST/FERMI soon. 
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Summary
• It is very promising to observe the dark scalars at the LHC.
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BACKUP SLIDES
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�

i

�ih
2 = 0.11

Outlook
• Comparison between Cosmology and Collider data is 

crucial to check the DSM.
 MHc= 50 GeV6 MA0= 10 GeV ; 6 ; -1] : mh=120 GeV ; l2=102 h1 log10 [
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•  Large cross section of 
   dark matter production
      
•  Linear collider  ???

Two or more co-existing DMs   



Lepto-Philic Dark Matter 
Model and Positron Excess

Work in progress

To whom do not suffer enough from my previous talk



PAMELA Data (positrons)
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arxiv:0810.4995

Data features an abrupt 
rise in positron fraction



arxiv:0810.4994

No significant excess seen 
above expectation

PAMELA Data (antiprotons)
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 (1) Dark Matter is lepton favored, 
        i.e. DMs cannot annihilate into quarks,     
      or, quark modes are highly suppressed.

 (2) Dark Matter should be heavier    
        than                    . � 100GeV

Lessons we learned ...
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• Perform Markov Chain Monte Carlo to scan parameters:

– MDM

– Fraction of annihilation to modes:

– Vary positron boost factor to minimize  

• MCMC scan optimally scans over parameter space

– Bayesian approach that optimally scans parameter space

– More efficient with large number of parameters

– Chain based on collection of points chosen by relative likelihood

e+e�, µ+µ�, �+��, cc̄, bb̄, tt̄, W+W�, ZZ, hh

�2

56

Model independent study
Barger, Keung, Marfatia, Shaughnessy, arxiv:0809.0162



• For 150 GeV DM mass,

– Good fit: annihilation to lepton

– In the middle: W/Z boson depending on propagation model

– Bad fit: annihilation to quarks / Higgs boson

Med Min

Model independent study

57

Barger, Keung, Marfatia, Shaughnessy, arxiv:0809.0162



Lepto-philic Dark Matter Model
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Lepto-philic Dark Matter Model
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LF = 0, LS = 1
LF = 2, LS = 1

R = (�)L+2S

LF = 1, LS = 0

(⇥�0 � ⇧�+)⇤ + h.c.

F = � S = �

Lepto-philic Dark Matter Model
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(1) Lepton number conservation

!−

!+

XF

XF

YS

Majorana
Dirac

(2) Additional Z2 symmetry
Dirac
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DM annihilation in the LDM
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Majorana DM:  (p-wave suppression)

Dirac DM:
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Majorana DM suffers from
p-wave suppression

63

�

(1) The s-wave amplitude highly suppressed 
by the tiny electron mass.

(2) The p-wave amplitude highly suppressed by 
the small relative velocity. 
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(1) Relatively soft positron

(2) Hard photon
       Gamma-Ray detection
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Positron propagation through Halo

66

• Positron spectra at source propagates to Earth via diffusion-
loss equation 

– Positron flux at Earth

• Halo function            describes propagation through galaxy 
and depends on Halo model and propagation parameters:
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Cirelli, Franceshini, Stumia
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  PreliminaryMed Propagation Model
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  PreliminaryMin Propagation Model
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Connection, why ?
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PAMELA data 


