
Century-Scale Intensity Modulation of Large-Scale Variability in Long
Historical Temperature Records

NAIMING YUAN

Laboratory for Climate and Ocean–Atmospheric Studies, Department of Atmospheric and Oceanic Science,

School of Physics, Peking University, and Chinese Academy of Meteorological Science, Beijing, China

ZUNTAO FU

Laboratory for Climate and Ocean–Atmospheric Studies, Department of Atmospheric and Oceanic Science,

School of Physics, Peking University, Beijing, China

(Manuscript received 18 June 2013, in final form 23 October 2013)

ABSTRACT

Large-scale variability in long historical temperature records around the North Atlantic Ocean is analyzed

by means of power spectral density (PSD) analysis and detrended fluctuation analysis (DFA). It is found that

the intensity of large-scale variability is changeable with time, and longmemory analysis can be used to detect

this possible intensity variation quantitatively. By estimating long-term memory (LTM) in subrecords of

different time intervals, a century-scale variation of LTM is revealed, which further indicates a century-scale

intensity modulation of the large-scale temperature variability. At the beginning of the nineteenth and

twentieth centuries, the large-scale variability is more apparent, whereas in the second half of the nineteenth

and twentieth centuries the large-scale variability becomes less significant. Considering the importance of

large-scale variability, the findings herein suggest a new perspective on the understanding of climatic change.

1. Introduction

It is well recognized that the global climate over the

past centuries exhibits substantial variability on time

scales of a century or less (Schlesinger and Ramankutty

1994; Mann et al. 1995; Becker et al. 1999). Especially in

the North Atlantic, the well-known Atlantic multi-

decadal oscillation (AMO), which may be driven by the

ocean’s thermohaline circulation, is particularly notable

and has been thought responsible for the observed var-

iations in nearby regions (Delworth and Mann 2000;

Gray et al. 2004; Sutton and Hodson 2005). In light of

this large-scale/low-frequency variability (LFV), one

can better predict climate or, more essentially, gain in-

depth understanding of the mechanisms of climate

change (Mann et al. 1998; Keenlyside et al. 2008; Ottera

et al. 2010; Franzke andWoollings 2011). Therefore, it is

of great importance to study the large-scale climate

variability systematically, as many scientists have al-

ready done during the past few decades (Marshall et al.

2001; Dima and Lohmann 2004; Grosfeld et al. 2007).

However, when studying the large-scale climate vari-

ability, in addition to the time scales on which the climate

may vary, one also needs to know whether, or in what

pattern, the intensity of the large-scale variability changes

with time. Even though, because of the time limits of our

instrumental data, it is not easy to implement rigid re-

search for multidecadal scales, for shorter scales (from

3 months to 3 yr) we still may find some hints for the

possible changing intensity. To detect these hints is thus

the main focal point of this study.

A traditionalmethodwe can use to describe how a time

series oscillates on different time scales is the so-called

power spectral density (PSD) analysis. In a climatic time

series, it is normal to get high power at low frequency

and low power at high frequency (Hasselmann 1976), as

shown by Fig. 1b. Since higher power at low frequency

normally indicates more apparent large-scale variability,

by comparing the PSD calculated from different time

intervals, one can determine whether there is an intensity

Corresponding author address: Zuntao Fu, Laboratory for Cli-

mate and Ocean–Atmosphere Studies, Dept. of Atmospheric and

Oceanic Sciences, School of Physics, Peking University, Beijing,

100871, China.

E-mail: fuzt@pku.edu.cn

1742 JOURNAL OF CL IMATE VOLUME 27

DOI: 10.1175/JCLI-D-13-00349.1

� 2014 American Meteorological Society

mailto:fuzt@pku.edu.cn


variation of climate variability at large time scales, as

shown in Fig. 2a. However, it is difficult to determine the

variation quantitatively given the poor statistics of PSDon

large time scales, so we employ another well-developed

method, detrended fluctuation analysis (DFA) (Peng

et al. 1994; Kantelhardt et al. 2001). In DFA, the fluctu-

ation function F(s) is used, which is calculated from a

given time series on different time scales of s, to represent

the variabilities. It is proved that F(s) obtained fromDFA

has a close relationship with PSD, but it is less influenced

by the statistical uncertainty resulting from the multi-

window detrending and averaging procedure (Talkner

and Weber 2000), as shown in Fig. 1. Therefore, we can

use the results of DFA as a better measurement of the

climate variability. For more details of DFA, please refer

to section 2.

Actually, DFA is mainly applied for the estimation

of the well-known phenomenon of long-term memory

(LTM) (Koscielny-Bunde et al. 1998; Fraedrich and

Blender 2003; Rybski et al. 2006; Chen et al. 2007;

Vyushin and Kushner 2008; Mann 2011). When a given

time series is long-term correlated, its result normally

exhibits a power-law scaling behavior [F(s); sa] and its

autocorrelation function C(s) decays slowly also as a

power law [C(s) ; s2g] (Kantelhardt et al. 2001), which

indicates self-similarity. Since the stronger the LTM is,

the more apparent large-scale variability might be (Zhu

et al. 2010), it follows that by analyzing whether the

LTM varies with time, one can show if, or in what pat-

tern, the intensity of the large-scale variability varies

with time. Therefore, our concern in this study can also

be considered as a detection of the LTM variation.

In view of the well-known AMO and its influence on

climate in nearby regions, here we use 12 instrumentally

long temperature records observed around the North

Atlantic Ocean for analysis. By determining the LTM of

subrecords from different time intervals, a century-scale

variation cycle is found, which may indicate a possible

intensity variation of the climate large-scale variability,

and lead to a new perspective on climate change.

2. Data and methodology

a. Data

The 12 daily long-term temperature records are ob-

tained from the Royal Netherlands Meteorological In-

stitute (KNMI) Climate Explorer (http://climexp.knmi.

nl/). Details are shown in Table 1. We use these 12

temperature records for our research because of two

considerations: 1) The records are all observed around

the North Atlantic Ocean. 2) They all have long history

with few missing points. Some records’ length can

be even longer than 200 years. It is worth noting that

we use the minimum temperature for two stations

(Toronto andRhein-Main), unlike for other stations for

which the mean temperature records are our main re-

search objects. This is because we do not have the mean

temperature data for these two stations. From the re-

sults, however, we can see little difference between the

mean and the minimum temperature (see Fig. 4, the

results of Prague and Vienna). Therefore, these two

stations with only minimum temperatures are included

in our study.

FIG. 1. Results of (a) DFA-2 and (b) power spectral analysis for the daily-mean temperature records in Milan. For

different time scales, the DFA-2 exponent a in (a) and the power spectrum exponent b in (b) are different. For larger

scale ($100 days), a 5 0.66 and b ’ 0.33, whereas for smaller scales (#20 days), a 5 1.25 and b ’ 1.49. Values of

a and b obtained in the figure comply with the relationship a5 (11 b)/2, which means that over a large-scale range,

the stronger the LTM is, the more apparent large-scale variability might be.
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Before our analysis, we first standardize the data by

(i) averaging the daily data over 2-week-long non-

overlapping windows to remove the short-term cor-

relations resulting from general weather regimes and

(ii) removing the seasonal trend through subtracting the

annual cycle, as ti 5 Ti 2 hTii (Koscielny-Bunde et al.

1998), where Ti is the biweekly temperature and ti the

temperature anomalies that we use for analysis. Con-

sidering the possible changes of annual cycle over the

past few centuries, we employ a sliding-window method

for calculation. We take 31 yr as the size of the window,

and calculate the annual cycle in each window. The

annual cycle determined is then subtracted by the mid-

year (or the 16th year in each window). In this way, 30 yr

of data (15 yr at the beginning and another 15 yr at the

end of the record) will not be taken into account. For

example, we only consider the temperature anomalies

from 1778 to 1992 (215 yr) in Milan.

TABLE 1. Details of the data we use for analysis.

Station Country

Location

(lat, lon)

Max/min/mean

temperature records Dates

Length

(yr)

Milan Italy 45.478N, 9.198E Mean 1763–2007 245

Prague Czech Republic 50.098N, 14.428E Max,min,and mean 1775–2004 230

Hohenpeissenburg Germany 47.808N, 11.018E Mean 1781–2011 231

Bologna Italy 44.508N, 11.358E Mean 1814–2011 198

Toronto Canada 43.678N, 79.408W Min 1841–2002 162

Vienna Austria 48.238N, 16.358E Max, min, and mean 1856–2011 156

Zagreb-Gric Croatia 45.828N, 15.988E Mean 1862–2011 150

Rhein-Main Germany 50.038N, 8.588E Min 1870–2011 142

FIG. 2. Results of (a),(c) power spectral analysis and (b),(d)DFA-2 of subrecords from two different time intervals,

for (top) Milan and (bottom) Prague (maximum temperature). It can be seen that remarkable differences arise over

large-scale range ($100 days), which indicates an intensity variation of the large-scale variability.
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b. Methodology

For analyzing the LTM in a given dataset, we employ

the detrended fluctuation analysis of second order

(DFA-2) (Kantelhardt et al. 2001). In DFA-2, one

usually does not calculate the variance of the record

of interest {xj} directly, but considers the cumulated

sum (profile) Yi 5�i
j51xj. One divides the profile into

nonoverlapping segments of size s. In each segment n,

the best quadratic fit of the profile and the standard

deviation of the profile around this fit are determined.

Then we average the result over all windows n to obtain

the mean fluctuation function F(s). One is interested

in the dependence of F(s) on s. For the case of LTM,

F(s) increases by a power law F(s) ; sa, with the ex-

ponent a. 0.5. Meanwhile, the power spectral density

S( f ) also decays as a power law S( f ) ; f2b, and the

exponent b has a relationship with a as a 5 (1 1 b)/2

(Kantelhardt et al. 2001). As shown in Fig. 1, high a

corresponds to high b, and vice versa. Therefore, on

large scales, a stronger LTM (high a) normally means

more apparent large-scale variability (high b), which

further indicates high predictability of the climate (Zhu

et al. 2010).

To determine whether the LTM varies with time, we

extract subrecords according to a 50-yr sliding window in

each standardized data. For example, 166 subrecords

can be extracted from Milan (215 yr; 1778–1992),

namely 1778–1827, 1779–1828, . . . , 1943–92. By de-

termining the LTM in each subrecord within the scaling

range from 100 to 1000 days (or roughly from 3 months

to 3 yr), we can find whether the LTM, or the intensity of

the large-scale variability, varies with time.

3. Results

Before our analysis, we first employ DFA-2 to these

12 temperature records and find that all the a values are

larger than 0.5 (ranging from 0.6 to 0.7; not shown here).

This means all the records are long-term correlated, and

the a values obtained are in line with previous findings

(Koscielny-Bunde et al. 1998). However, according to

the procedures of DFA, the fluctuation function F(s) is

averaged over all the time periods. For detailed in-

formation, a further analysis on the subrecords from

different time intervals is needed.

As shown in Fig. 2, we take the mean temperature in

Milan and the maximum temperature in Prague as ex-

amples. One can find that in different time intervals, the

scaling behaviors can be remarkably different over large-

scale range (100–1000 days), which further indicates an

intensity variation of the large-scale variability, as shown

in Figs. 2a and 2c. Since the power spectral density fluc-

tuates tremendously at large scale (Figs. 2a,c), we prefer

to use the results of DFA as a better measurement of

the climate variability (Figs. 2b,d). In Fig. 3, we randomly

select four time periods in Prague for analysis. In-

terestingly, in the time window of 1792–1841, a relatively

stronger LTM (a5 0.72) is found, while in the following

window of 1839–88, the correlations becomeweaker (a5
0.64). For the twentieth century, the LTM again becomes

stronger in the first half (time window of 1901–50, a 5
0.70), and then weaker (time window of 1940–89, a 5
0.65). There seems to be a quasi-century variation cycle,

as shown in Fig. 3b.

However, we note that this variation cycle needs to

be confirmed very carefully. As some former works

FIG. 3. (a) DFA-2 results of the subrecords (50 yr) extracted from the biweekly mean temperature data of Prague.

Different LTMs are obtained in different timewindows. In the time windows of 1792–1841 (black), a5 0.72; 1839–88

(red), a 5 0.64; 1901–50 (blue), a 5 0.70; and 1940–89 (green), a 5 0.65. (b) The variation of a values with time.

Numbers on the top of the figure are the start year for each time window, while at the bottom of the figure are the end

year of the corresponding time window.
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discussed (e.g., Rybski and Bunde 2009; Lennartz and

Bunde 2009), for a long time series with a given DFA

exponent a, if we divide the data into many short sub-

records, the a values of the subrecords may vary tremen-

dously for statistical reasons, and F(s) values averaged

over different time intervals can be different only as a re-

sult of statistical uncertainty. Therefore, to make sure

whether the quasi-century variation cycle shown in Fig. 3 is

induced by intrinsic property, we further made the same

analysis to 1) all the 12 long-term temperature records and

2) shuffled records derived from the 12 temperature re-

cords. Figure 4 shows the results, according to which we

argue that the LTM does have a century-scale cycle signal.

There are two pieces of evidence, as follows:

1) For all the 12 temperature records, as shown in Fig. 4,

the a values (obtained from subrecords with a scaling

range of 100–1000 days) vary with time according to

a similar pattern. They all have relatively higher a at

the beginning of the nineteenth and twentieth cen-

turies and lower a around the second half of the

nineteenth and twentieth centuries. By further aver-

aging the results over the 12 samples (see the gray

thick line shown in Fig. 4) a clear century-scale

variation is obtained. If the variation of a is only

a result of statistical uncertainty, it is unlikely that all

the 12 temperature records would have one similar

pattern. In other words, there should be a dynamic

mechanism that governs the variation of LTM.

2) After the 12 temperature records are shuffled (LTM

is removed), as shown in Fig. 4, although variations of

a still arise, the shuffled records have random phases

(or patterns), which therefore result in a ‘‘flat-average

line’’ (the gray thick line in Fig. 4). This means the

method itself will not result in any ‘‘cycle signal’’ and is

reliable for detection.

To better illustrate the results shown in Fig. 4, Table 2

shows the statistical properties of the a values. It is easy

to find that the standard deviations, or the range of the a

variations obtained from the 12 temperature records,

are all larger than that obtained from the shuffled data.

Since the a variations obtained from the shuffled data

should result from the statistical uncertainty and the

FIG. 4. Variation of a values obtained by DFA-2, for 1) all of the

12 long temperature records (top curves) and 2) the shuffled re-

cords derived from the 12 long temperature records (bottom

curves). By averaging the results over the 12 samples, we can obtain

an average curve, which is shown as the thick gray line. There is

a remarkable century-scale oscillation of LTM in the long historical

temperature records, whereas for the shuffled records the average

line is flat. As in Fig. 3b, numbers at the top (bottom) of the figure

are the start year (end year) of each time window.

TABLE 2. Statistical properties of the a values in Fig. 4, including the standard deviation, maximum, minimum, and the range of the

a variation. The bottom row shows the results of the averaged a variation (over the 12 samples).

Temperature

record

From temperature records From shuffled data

Station Std dev Max Min Range Std dev Max Min Range

Milan Mean 0.026 0.73 0.61 0.12 0.017 0.54 0.47 0.07

Prague Max 0.034 0.74 0.61 0.13 0.022 0.54 0.45 0.09

Mean 0.036 0.74 0.60 0.14 0.015 0.54 0.47 0.07

Min 0.033 0.73 0.59 0.14 0.015 0.53 0.45 0.08

Hohenpeissenburg Mean 0.038 0.69 0.55 0.14 0.018 0.54 0.47 0.07

Bologna Mean 0.022 0.74 0.64 0.10 0.015 0.53 0.47 0.06

Toronto Min 0.020 0.70 0.61 0.09 0.014 0.53 0.46 0.07

Vienna Max 0.036 0.73 0.60 0.13 0.014 0.53 0.47 0.06

Mean 0.032 0.74 0.61 0.13 0.014 0.53 0.46 0.07

Min 0.031 0.72 0.60 0.12 0.013 0.52 0.47 0.05

Zagreb-Gric Mean 0.038 0.75 0.60 0.15 0.012 0.54 0.47 0.07

Rhein-Main Min 0.020 0.70 0.61 0.09 0.010 0.52 0.48 0.04

Averaged variation 0.033 0.73 0.60 0.13 0.006 0.51 0.48 0.03
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error, as mentioned above, the results shown in Table 2

indicate that the LTM variation signal seems to be sig-

nificant. However, even so, we still need a more rigor-

ous statistical significant test. From Table 2, we believe

a more important result is that the averaged a variation

(the gray thick line in Fig. 4) obtained from the tem-

perature records maintains the statistical properties

with larger standard deviation and variation range,

while the result obtained from the shuffled data shows

almost no variation due to the ‘‘average’’ procedure.

This result is apparently associated with the variation

patterns, as mentioned above. Variation of a arising

from random statistical errors may be offset by the

average procedure, while variations arising from in-

trinsic properties should not be affected. Therefore, to

the end of this section, we take the averaged a variation

(over 12 time series) as our research object, and make

a statistical test.

To make the statistical test, we generate 120 000 arti-

ficial time series by using a autoregressive fractionally

integrated moving average (ARFIMA) stochastic pro-

cess (Caballero et al. 2002; Podobnik and Stanley 2008):

yi [ �
‘

j51

aj(r)yi2j 1hi , (1)

where hi denotes an independent and identically dis-

tributed (i.i.d.) Gaussian noise and aj(r) are statistical

weights defined by

aj(r)[
G( j2 r)

G(2r)G(11 j)
, (2)

and G( j) denotes the gamma function. Here r is a free

parameter ranging from 0 to 0.5 and is related to the

DFA exponent a as (Podobnik and Stanley 2008)

a5 0:51 r . (3)

In this test, we use r 5 0.16, which corresponds to the

mean a value (a 5 0.66) of the 12 temperature records.

The length of each artificial time series is 90 885, which

corresponds to the length of 249-yr-long daily data (from

1763 to 2011). For each time series, we repeat our re-

search procedures as introduced in section 2 and obtain

an a variation by employing the sliding window analysis.

To compare with the a variation averaged over 12

temperature records (the gray thick line in Fig. 4), we

further average every 12 a variations obtained from the

artificial data and finally get 10 000 (averaged) a varia-

tions. Based on these artificial a variations, we can de-

termine the uncertainty intervals (owing to statistical

errors) of the variation, and tell under what confidence

probability the a variations in the temperature records

are significant. Figure 5 shows the results. From Fig. 5b,

we can see that there is no a variation in the artificially

generated data, which is as expected. After we take the

uncertainty intervals (shown in Fig. 5a) into account, as

shown in Fig. 5a, the a variation obtained from the

temperature records is still remarkable. Therefore, we

have reason to believe that the a variation obtained

from the temperature records is indeed associated with

the intrinsic properties of the time series, and the LTM

does have a century-scale cycle signal.

We would like to note that the length of the sliding

window, 50 yr, is not specific. With other choices, such as

40 or 60 yr (not shown here), one can still reach similar

conclusions.

According to the previous discussion (Fig. 1), we

know that the stronger the LTM is, the more apparent

large-scale variability might be. Therefore, the century-

scale variation cycle of LTM indicates a possible century-

scale intensity modulation of the large-scale temperature

variability. That is, at the beginning of the nineteenth

and twentieth centuries, the large-scale variability is

more apparent, whereas at the second half of the

nineteenth and twentieth centuries the large-scale vari-

ability becomes less significant (see Fig. 4). How to

understand this century-scale modulation is of great

FIG. 5. Shown are a variations with uncertainty bounds: (a) the

a variation of the temperature records (black curve), and (b) the

results of the artificially generated data (black curve). The blue

curves represent the uncertainty bounds of 99% confidence in-

terval, while the red dashed line denotes the uncertainty bounds of

one standard deviation. It is easy to find that there is no a variation

in the artificial data, and the a variation obtained from the tem-

perature records is significant, even after we take the uncertainty

bounds into account. As in Figs. 3b and 4, numbers at the top

(bottom) of the figure are the start year (end year) of each time

window.
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importance and will be relevant for the research of cli-

matic change, especially for a better climate prediction.

The next section provides a brief discussion of this

phenomenon.

4. Conclusions and discussion

In this study, wemainly focus on what the intensity (or

significance) of the large-scale temperature variability

may be like in different historical periods. We find that

long memory analysis can be used to detect this possible

intensity variation quantitatively. By determining the

LTM of subrecords from different time intervals, one

can see a century-scale variation of LTM. Although

limited by the data length, such that we only discuss

LTM on scales from 3 months up to 3 yr, the results can

still further indicate a possible century-scale intensity

modulation of the temperature variability. At the be-

ginning of the nineteenth and twentieth centuries, the

large-scale variability is more apparent, whereas at the

second half of the nineteenth and twentieth centuries

the large-scale variability becomes less significant.

To understand this phenomenon, more work and new

mechanisms are needed. Recently, it has been recog-

nized that nonstationarity can be one of the origins of

the LTM (or the so-called long-range dependence), such

as the persistent atmospheric regime behavior discussed

by Franzke et al. (2011). The author suggests that jet

stream regime behavior in the North Atlantic is a likely

reason of the observed LTM (Franzke 2013). Therefore,

changes of the regime behavior may cause oscillations

and further can be used as a mechanism to explain the

variation cycle of the LTM revealed in this study.

However, it should be noted that even the variability of

the atmospheric regime behavior itself is governed by

more fundamental processes such as the North Atlantic

Ocean variability, among others (Franzke et al. 2011;

Franzke 2013). Therefore, considering that the time

scales we are talking about in this study are large, we

believe that the slow change effect of theAtlantic Ocean

(Grosfeld et al. 2007; Zhang et al. 2007) should play an

important role in interpreting this century-scale varia-

tion. In fact, as shown in previous studies (e.g., Blender

and Fraedrich 2003), it is only when taking the oceanic

variability into account, such as in a coupled atmosphere–

ocean general circulation model (AOGCM), that one

can possibly reproduce the LTM observed in instru-

mental records. Similarly, we believe the century-scale

modulation of the temperature variability should also

be attributed to the oceanic variability. For better

understanding its mechanism, more detailed research

combined with climate models is needed, such as a

careful examination of whether the oceanic variability

can drive a century-scale intensity modulation of the

temperature variability.

Here, a well-known mode of variability, the Atlan-

tic multidecadal oscillation (AMO) (Schlesinger and

Ramankutty 1994), should not be ignored. AMO rep-

resents a multidecadal oscillation occurring in the At-

lantic Ocean and is normally defined from the patterns

of SST variability in the North Atlantic. It has been

recognized that AMO is closely related to the observed

variations (such as the temperature, rainfall, etc.) over

much of the Northern Hemisphere, especially in North

America and Europe (Delworth and Mann 2000; Gray

et al. 2004; Sutton and Hodson 2005). Therefore, it may

also be a possible cause of the large-scale variation of

the LTM (or the intensity modulation of the tempera-

ture variability) revealed in this study. In Fig. 6, we

present the AMO index and the a variation (Fig. 4)

together. The AMO index is available from the website

of the National Oceanic and Atmospheric Administra-

tion (NOAA)’s Physical Science Division (PSD) Earth

System Research Laboratory (ESRL) (http://www.esrl.

noaa.gov/psd/data/climateindices/list/) and comprises

annual data. Since we apply DFA to subrecords of 50 yr,

the a obtained is thus mapped to the middle year. For

example, if we apply DFA to the subrecord of 1901–50,

the a value is mapped to the year of 1925. Limited by the

sliding-window analysis as introduced in section 2, we

only show the a variation from 1802 to 1971 (Fig. 6a),

while the corresponding AMO index from 1856 to 1971

is also shown in Fig. 6b. Interestingly, a good relation-

ship between them seems to exist. Especially during the

FIG. 6. Relationship between the (a) a variation and (b) AMO

index. A close relationship between them is apparent. During the

periods of 1870–1920 and 1920–60, increasing (decreasing) a cor-

responds to decreasing (increasing) AMO index. In the last 10 yr

(1960–70), the opposite varying trends between them seem to

disappear.
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periods of 1870–1920 and 1920–60, increasing (de-

creasing) a corresponds to decreasing (increasing)

AMO index. However, in the last 10 yr of data (1960–

70), the opposite varying trends between them seem

to disappear. Why does the LTM becomes stronger

(weaker) when the AMO index is on a decreasing (in-

creasing) trend during the period of 1870–1960? Why

did the relationship change in the last 10 yr? Are there

any mechanisms that can interpret the relationship be-

tween them? These questions are still unclear, and more

detailed work is needed in the future.

Moreover, besides the oceanic variability, external

forcing such as the solar activity (which is characterized

by multidecadal variability; Lohmann et al. 2004; Soon

2005) should also be taken into account. We will give

a detailed discussion on this research (combined with

climate models) in a subsequent paper, but our findings

herein are still interesting and show a new perspective

on the research of climate change.
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