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Abstract

The multi-order exact solutions of the one-dimensional complex Ginzburg—Landau equation are obtained by the use of
the wave packet theory. In these solutions, the zeroth-order exact solution is a plane wave; the first-order exact solutions are
shock waves between the amplitude and the shift of phase, spiral waves between the shift of phase and distance or between
the shift of phase and the amplitude; the second-order exact solutions are two periodic waves with certain conditions and
their limits — the shock waves and solitary waves can aso be found. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The one-dimensional complex Ginzburg—Landau
equation including the non-steady, nonlinear, disper-
sive and diffusive terms, as well as the linear growth
or damping term, is usually written as

du o d%u
Ia_t + (al+la2)8_x2

+( By +iBy)luPu—iyu=0 (1)
where i =+ —1 is a pure imaginary number; «,
a,, By, B, and y are al red constants. (B3, +
i B,)Iulu represents the nonlinear effect, ozlazu/ax2
and iazazu/ax2 represent the dispersive and diffu-

* Corresponding author.

sive effects, respectively, iyu denotes the linear
growth or damping.

When «, = B, = y=0, the complex Ginzburg—
Landau Eq. (1) degenerated into the following non-
linear Schrodinger equation

du a%u WU 0 )
i— 4+ a;— + Bylul‘u=
at alaxz B1 (2)

The complex Ginzburg-Landau Eqg. (1) plays an
important role in many branches of physics, such as
the fluid dynamics, nonlinear optics, chemical and
biological dynamics, etc. [1-4]. A lot of studies have
shown that the complex Ginzburg—Landau Eq. (1)
possesses a rich variety of solutions involving the
plane waves, shock waves, solitary waves, spira
waves, as well as the hole, periodic and quasi-peri-
odic solutions, etc. [5-12].
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In this Letter, the multi-order exact solution of the
complex Ginzburg—Landau Eq. (1) is obtained by
use of the wave packet theory and arelatively simple
method.

2. Envelope solutions

We assume that the envelope solutions for Eg. (1)
are of the following form
U=a(§)ei[kx—mt+9(§)] (3)

where k and w are the wave number and angular
frequency, respectively, and

é=e€(x—c4t), c,=const. (4)

€ < 1 is small parameter. Both the amplitude a( ¢)

and the shift of phase 0(¢) are real functions.
Substituting (3) into (1) and equating the real and

imaginary parts to zero separately, we have

a(w —a, K+ Blaz)

+ €

dé da
(Cg—Zalk)ad —2a,k— a

, d2a de\?
+ € o, F—a(d—g)
da do dzel}_

> Zd_f d_é: + ad—gz (5a)

—a(y + a,k? - B,a’%)

de da
€ —2a2kad—§ — (Cg — Zalk)d_f

, d?a do\?
+e°{a, F —a d_f
2da de d%
dé¢ dg d§2
Egs. (5) constitute the equations of a(£) and 6(&)
in the envelope solution (3) of the complex
Ginzburg-Landau Eq. (1). In the following sections,

+a;

}:o (5b)

we look for the exact solutions in each order of
Egs. (5).

3. Zero-order exact solutions

Setting € = 0 which corresponds to that the varia-
tion of a and 6 with ¢ are disregarded in Egs. (5),
we obtain the following plane wave solutions [5,6]

o—ak?+ B,a2=0 (6a)
B,a>=0 (6b)

from which the dispersion relation and amplitude can
be determined.

v+ a,k®—

4. First-order exact solutions

Neglecting the terms with €2 in Egs. (5) yields

o] e

=a(®— a,k* + B,a%) (7a)
dé
(cg—2ajk)| e + 2a,k (ead_f)
= —a(y—i—azkz—Bza) (7b)

Egs. (7) congtitute the systems of first-order equa-
tions in a(¢) and 6(¢), we obtain the following
relations

da
8( df) =0, ( —a, K+ Blaz)
—Sla(y—F a2k2—,82a2) (8a)
de
S(Ead—g) = —8,a( @ — a,k*+ B,a%)

—82a(‘y+ azkz—Bzaz) (8b)
easily by the elimination, with
S =c,—2a,k, 8,=2a,k, 8=062+87 (9)
Eq. (8a) can be rewritten as

da dé

a( p+qga?) S (10)
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where
P=(wd—¥8;) —(a,;8,+a,8,)k? (11a)
q=B16,+ B0, (11b)
Eg. (10) can be integrated to give
p
P —(&-¢p p
2 — _ _ _Qde _ _
a?< — P (12a)
q
p & &) p
2 _ ____pbe — —
2q th 86 ( g go)’
a?> — g (12b)

where &, is an integration constant. Egs. (12) repre-
sent the shock wave solutions for the amplitude of
the complex Ginzburg—Landau Eg. (1) and can be
illustrated in Fig. 1 and Fig. 2, from which the
following results can be obtained: under the condi-
tion of a?< — p/q, when &— &, then a%(¢) -
— p/(2q); when ¢ > + (or § > —), then a® -

- p/a.

Eqg. (8b) can rewritten as

de )
8€d_§ =r+sa (13)
with
r= —(w61+762)+(a181—a262)k2 (14a)
s= —(B18,—B,9,) (14b)
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Fig.1. Shock wave solution for a®( p < 0) under the condition of
a<-p/aq.
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Fig.2. Shock wave solution for a® under the condition of a? <
-p/a

Substitution of Eq. (12) into Eq. (13) can be inte-
grated as

1 p S ﬂ(5—50)
0=§(r—as)(§—§o)—2—qln e ,
a?< —g (15a)

p s 2 e
9=5—( —ES)(S—SO)—Z—qIn e’ -1y,
a?> —g (15b)

which is the solution of the shift of phase of the
complex Ginzburg—Landau Eq. (1), which shows
that there is a spiral wave relation between the shift
of phase and distance, furthermore, when ¢ — +oo,
it is an Archimede spiral.

(8a) divided by (8b) yields

da p+o0a’
adf r+ sa?

which is a differential equation of a and 6 in the
polar coordinates (a,0) and can be integrated to give

(16)

L 1s r
; 1:E_
1922 "I p+qa2® ¢ P =eft (17)
where 6, is an integration constant, when ¢ — =0,
(17) can be reduced to
21 B(e—eo)
a=|qg ze' (18)
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Fig. 3. Spira wave solution between a and 6.

which represents a spiral and

can be illustrated in

Fig. 3. Thus (17) denotes the spiral wave solutions of
the complex Ginzburg—Landau Eq. ().

5. Second-order exact solutions

By means of (9), Egs. (5) can be rewritten as

Ez{a ﬁ —a(%)z- -« [2%% -l-ad—zel}
|de? \de 2%de dg T de?
: de da:
+ € lad_§_62d_§
+a(o—a,k?+pa*)=0 (19a)
ez{a ﬁ —al %)2 +a ZE% +ad—26”
?ldg? Tlde Hde de T de?
+el—6 a% -6 ﬁ
2% Ve
—a(y+a,k?—pB,a’) =0 (19b)
(Ellg)n;:aeltglsg 2@ g + asz and %’% —a(§g)? in Egs.
aez-ﬁ —a(%) \ P, € da +p eade
dé? "\ d¢ e T de
+a(q, +q,a%)=0 (20a)
an_Z%% dzel pe— da pzeaﬁ
| d¢é d¢ df dé dé

+a(r, +r,a’)=0 (20b)
with
a=a’+al p=0,8,— a,8,= @ ¢y — 2ak
(21a)
P, = @10, + @, 0; = @,Cq,
O = a,0— a,y— ak? (21b)
=0, B ta,By, 1=—(oyy+a,w),
ry=a;B,— a,B; (21c)
A similar way as [12], we set
b a9 2 ’b 22
“gg yoF z7a (22)
then Egs. (20) are reduced to
X d?y (dy)? dy
Yagz " \de] ™ ag
+a,yz—4z°—a;y*+4a,y°=0 (23a)
dz dy )
d_,f_bld_g_bzz+b3y+b4y =0 (23b)
with
2p, 4p, 4q,
a=—, a=—, 8=-——,
eEx Ex [Se
4
a, gz, (24a)
€
P& kA
1 2ea 8 ? ea 2% €’
ra
b, = pe (24b)

It is difficult to solve Eg. (23a) and Eq. (23b), so
we state only two cases, in which Eq. (23a) and Eq.

(23b) can be solved.

Case one: the nonlinear Schridinger equation,
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Thus,
4 2a,k
a,=0, a,=—°:(c,— ,
1 2 ale( g ay )
4 4B,
a3=—a1€2(w—alk2), a,= el

1
b, = ——(cg—2a;k), b, =0,

b,=0, b,=0.

Usually taking ¢, = 2a,k, then a, = 0, b; = 0. Thus,
Egs. (23) become

2 2
4P Ly3=0 (25a)
a,€
= (25b)
dé
We obtain from Eq. (25b)
z=a?h=C (26)

C is an integration constant. Often setting b
= d0/d§= 0 in the nonlinear Schrodinger equation,
then C = 0. Such that Eq. (25a) is reduced to

d?y dy \? 4

F_(d_f) " aleZ(w_alkz)yz
4B,

+ 3:0 27
oY (27)

In term of (22), Eq. (27) can be rewritten as

d?a

Zd_fz +((1)—011k2)a+ ,Bla3=0 (28)

a,€

From (28) the envelope solitary solutions of the
nonlinear Schridinger equation can be easily found.

Case two: ¢,=0, r;=0and r,=0. Since £=
eX, we get from (21) and (24)

p,=—-2ak, p,=0, a=0, b,=0 (29a)
b,=0, b,=0,
a, B,—a,B,=0 (29b)

ar +a,w=0,

Such that, Egs. (23) can be reduced to
2

dzy 2 2
ZyF—(d—g t+a,yz—4z° —azy

+a,y°=0 (30a)
dz dy
aE _bld_g =0 (30b)

it is explicit that the Egs. (30) are different from the
results given in Ref. [12].
From Eqg. (30b) we have

z=b,y (31)
Substituting (31) into Eq. (30a) yields

d?y 2
ZyE - (d_g + (@b, — 4bf —a;)y?

+a,y°=0 (32)
which is the Painlevé-type equation. Via the ansatz
dy
a4 v('y) (33)
Eq. (32) reduces to

dv

2yud—y —v?+ (a,b, — 4b —a;)y* +a,y°=0

(34)
Setting
w=p2 (35)
Eq. (34) is reduced to the following linear equation
in term of w(y):

aw
—_—— —W=
y

dy

from which the following solution can be obtained

_(azb1_4bf_as)y_a4y2 (36)

a,
w=Dly—(a2b1—4b§—a3)y2—?4y3 (37)

where D, is an arbitrary constant. Applying (33) and
(35), (37) becomes

&

=-35Y

2
5 y? + a(a2b1—4b§—a3)y+D

(38)
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which is a standard elliptic equation and D =
2
— D1
Supposed that [Z(a,b, —4bf —a,)]? — 4D >0
and y®+ Z(a,b, —4bZ—a,)y+D=0 has two
real roots A and B (B> A), When a, <0, the

solution of (38) is given by
m= ‘/ — 39
B (39)

B
y=Asnz(V - a% §,m)

where sn() denotes the Jacobi elliptic sine function
and m is the modulus.

Similarly, when [2(a, b, — 4b — a,)]? — 4D > 0
and y*+ Z(a,b, —4bZ—a,)y+D=0 has two
real roots B and B — A (B> A), then when a, > 0,
then solution of (38) is given by

y=Bdn2(\/ZSB§,m) mE\/é) (40)

where dn() denotes the Jacobi elliptic function of the
third kind and m is modulus.
Notice that y = a2, we obtain from (39) and (40),

respectively

a=VAs _a%ng’m) (mz\/é) (41)
and

aE@dn(\/?&m) (mz\/é) (42)

(41) and (42) are the periodic solutions in amplitude
of the complex Ginzburg—Landau equation under the
condition (29).

If m— 1, (41) and (42) then degenerate into

a=y/Atanh V- a4_8I3 §) (43)
and

a,B
aE\/ﬁsech( ?5) (44)

respectively. (43) and (44) are the shock and solitary
wave solutions in amplitude of the complex
Ginzburg—Landau equation.

6. Conclusion

Applying the wave packet theory the multi-order
exact solution of the complex Ginzburg—Landau
equation are obtained. The multi-order exact solu-
tions including the familiar plane wave, shock and
solitary waves, periodic and spiral solutions have
relatively simple form and clear picture.
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