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Abstract

A Jacobi elliptic function expansion method, which is more general than the hyperbolic tangent function expansion method,
is proposed to construct the exact periodic solutions of nonlinear wave equations. It is shown that the periodic solutions obtained
by this method include some shock wave solutions and solitary wave soluti@@91 Elsevier Science B.V. All rights reserved.
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1. Introduction

It plays an important role to find the exact solutions of nonlinear wave equations in the nonlinear problems.
Recently, a number of methods have been proposed, such as the homogeneous balance method [1-3], the hyperbo
tangent function expansion method [4—6], the trial function method [7,8], the nonlinear transformation method
[9,10] and sine—cosine method [11]. However, these methods can only obtain the shock and solitary wave solutions
and cannot obtain the periodic solutions of nonlinear wave equations. Although Porubov et al. [12-14] have
obtained some exact periodic solutions to some nonlinear wave equations, they use the Weierstrass elliptic functior
and involve complicated deducing. In this Letter, the Jacobi elliptic function expansion method, which is more
general than the hyperbolic tangent function expansion method, is proposed and applied to some nonlinear wave
equations. It is shown that the periodic solutions obtained by this method include some shock wave solutions and
solitary wave solutions.

2. Jacobi dliptic function expansion method

Consider a given nonlinear wave equation
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du du 9%u 9%u
N P R N D R =05 1
(” 9t 9x’ 812 9x2 > @

we seek its wave solutions of the following form:
uz”(é)v gzk(-x_Ct)v (2)

wherek andc are the wave number and wave speed, respectively.
By the Jacobi elliptic function expansion methadé) can be expressed as a finite series of Jacobi elliptic
function, sr¥, i.e., the ansatz

u@) =Yy ajsne (3)
j=0

is made and its highest degree is

O(M(E)) =n. (4)
Notice that

d - .

d_Z ZZ;)jaj sn~t&cné dng, (5)

j:

where crg and dre are the Jacobi elliptic cosine function and the Jacobi elliptic function of the third kind,
respectively. And

cPé =1 — srfé, drfé =1 — m?srPé (6)

with the modulusn (0 <m < 1). Since

d d d 2
Esns =cnédng, £cn§ = —sné dné, Edng = —m*Sné cnég, @)
the highest degree ai’u/d&? is taken as
0<%>=n+p, p=1273 ..., (8)
and
dPu
0<uqd€—p>=(q+l)n+p, ¢g=0,12..., p=123,.... 9)

Thus we can seleet in (3) to balance the derivative term of the highest order and the nonlinear term in (1).
We know that whem — 1, sné — tanhg, thus (3) is degenerated as the following form:

u(E) =Y ajtanh & (10)

j=0
So, the Jacobi elliptic function expansion method is more general than the hyperbolic tangent function expansion
method.

3. Applications

We illustrate the applications of the Jacobi elliptic sine function expansion method to some nonlinear wave
equations.
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3.1. Applicationsto single equation

3.1.1. KdV equation
3

du au 0°u
- - —— =0 11
o ax TPa3 (1)
Substituting (2) into (11), we have
du ,d3
= ru— — =0. 12
‘aE T TP g (12)
Thus we can deduce from (3) that
du d3u
thus
n=2. (14)
So the KdV equation (11) may have the following form travelling wave solution:
u(¢) =ag+aysné +a28l’?§ (15)
and
du
G (a1+ 2azsng) cng dng, (16)
MZ’_; = [a0a1 + (a% + 2a0a2) sné + 3aiaz Snzé + 2a§ SF?’E] cné dné, a7
d2
d—;z‘ = 2a; — (1+ m?)aysné — 4(1+m?)az st & + 2m%ay s & + 6mazsif &, (18)
d3
d—; =[—(1+m?)a1 — 8(1+ m®)azsné + 6m?ay Srf & + 24m®az srP & | cné dnk. (19)

Substituting (15) into (12), we have
~[e— a0+ (1+m?)pkJaz cng dné + {a — 2[c — a0+ 4(1+ m?)Bk?az | sné cns dn
+ 3a1(az + 2m?Bk?) srf & cng dné + 2ap(az + 12m*Bk?) st & cng dng = 0. (20)
Thus we can determine the coefficients
a1=0,  ax=-12m%Bk*,  ao=c+4(1+m?)pk>. (21)
Substituting (21) into (15), a final solution is given,
u=c+a1+m?)pk% - 12m?k?srf & = c + 4(1 — 2m?) Bk* + 12m?Bk? crP &, (22)

which is the exact periodic solution of KdV equation (11). Usually, it is known as the cnoidal wave solution of
KdV equation.
Takingm = 1, then (22) is reduced to

u=c—4pk? + 12Bk%seci &, (23)
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which is the solitary wave solution of KdV equation. Especially, when4gk?, (23) becomes

u = 3csech i()c —ct).
V 48

Similarly, this method can be applied to other single equation, such as:

3.1.2. Boussinesg equation

92u 282u 9%u 82u?

a7~ Vga2 Pz =0

Its ansatz solution is (15). Substituting (2) and (15) into (25) yields
2[(c? — cB)az + 4(1+ m?)ak?ap — B(af + 2apaz)] — {(1 +m?) (2 — B) + k[ (14 m?)® + 12m?]
+2B[(1+ m?)ao — 6az] far sng — 2{2(1+ m?) (¢ — c§)az + 4uk?[2(1 + m?)? + Om®]az
— 26[(1+m?)a? +2(1+ m?)agaz — 3a3] JazsiP & +2{m?(c? — cf) + 10m2(1+ m?)ok?
— B[2m?a0 — 9(1+ mP)az] farsrPé + 2{3m3(c? — F)az + 60m2(1 + m?)ak?ay

— ,8[3m2a% + 6m2aoa2 — 8(1 + mz)az] } sn“é;‘ — 24mz(m2(xk2 + ,Baz)al SFFE

— 20}112(6171205k2 + ﬁaz)az Snﬁé’,: =0,

from which it is determined that

2 2
¢ —Cy

2

6
a1 =0, ar= —Emzakz, apg=

Thus the periodic solution of (25) is

2 2
™ —Cqg

2 B

Its corresponding solitary wave solution is

2—c3  2ak?®  6ak?

u =

u= + seclf &.
2B B B
3.1.3. mKdV equation
50U 33u

ou —=0.
ot 0x 9x3

Its ansatz solution is
u=aop+ a1 Sng.
Substituting (2) and (31) into (25) yields

+ %(1 + mz)akz.

2_
+ 3(1+ m?)ak? — %mzakzsrﬁg " 5 (2m? — V)ak? + gmzakzcnzg.

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

[—c+aad — B(1+ m?)k?]ax cné dng + 2waga? sné cné dng + (wa? + 68m?k?)ay srP & cng dng =0,

from which it is determined that

/| 6
ap=0, a1 ==+ —;'Bmk, c= —ﬁ(l—i— mz)kz.

(32)

(33)
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Thus the periodic solution of (30) is

_y 5 Y By
u==+ amksné—:l: a(1+m2)msn ﬁ(1+m2)(x ct), (34)

which demands that> 0,a¢ > 0,8 <0orc <0,a <0, 8 > 0. And its corresponding shock wave solution is

u:i‘/—6—ﬂktanh$ =i\/§tanh —i(x—ct). (35)
a a 28

3.1.4. Nonlinear Klein—Gordon equation
We discuss the following two kinds of nonlinear Klein—-Gordon equations:

8%u 3%u

52 %8 2+otu—,3u =0 (36)
and

8%u d%u

92 %8 2+otu—,3u =0. (37)

Their corresponding ansatz solutions are (15) and (31), respectively. Similarly, their exact periodic solutions can
be obtained. For (36), it is

2(1+m? 6
‘= % _ %,}(02 — ) g~ ) srPe
a  2(1-2m? 6
-2 - %kz(cz — ) = Gk — ) orPs. (38)
Its corresponding solitary wave solution is
=g - ng(cz _3)- ng(cz — ) seche. (39)
For (37), itis

2m2k2(c —c G — et (40)
A R ﬂ(1-+in2) (2 _-cz)(1-+,n (et

which demandg > 0,8 > 0,¢2> c3 ora <0, B <0, c? < c3. Its shock wave solution is

kz(c cd) [a
——— " tanht =+ tanh (x —ct). (42)
2(c — CO

3.2. Applicationsto coupled equations

The Jacobi elliptic function expansion method can be also applied to coupled equations to obtain their exact
periodic solutions. We illustrate this by using the following variant Boussinesq equations:
du  du v BPu v duv) 93u

- —_ =0. 42
8t+ 0x +ﬁ8x3 (42)

o P T o T T
Setting

I/t:bt(%), U:U(f), ézk(x_Ct)s (43)

’
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obviously we can make the following ansatz solutions to (42):

u(€) =ag+ a1 SnE + as S &, v(€) = bo + b1SNE + by SIPE. (44)
Substituting (43) and (44) into (42) yields
u=c+ i — 4(1+ mz)akzc + 12em?ak? snzé =c+ i — 4(1 — 2m2)ozk2c — 12cmPak? ané,
2ac 2o
B 2\ 212 24,2 i 2\ 2,2 24,2
V=g +2(1+m?) Bk? — 6m2pk>sri & = ~ 9 +2(1— 2m?) Bk® + 6m>pk> crie, (45)

which is the exact periodic solution of (42), i.e., the cnoidal wave solution, their corresponding solitary wave
solution is
,32

4¢2¢,2

B

oc

U=c+ —— +4dak’c — 12cak’secfs, v=-— 2Bk® + 6Bk seclR &. (46)

4. Conclusion

In this Letter, the Jacobi elliptic function expansion method is proposed and applied to some nonlinear wave
equations. It is shown that this method is more general than the hyperbolic tangent function expansion method.
And the periodic wave solutions obtained by the Jacobi elliptic function expansion method contain the shock wave
and solitary wave solutions. In the applications, it is shown that the Jacobi elliptic function expansion method can
be applied to both single equation and coupled equations. Actually, this method can be applied to obtain solutions to
more nonlinear wave equations, as long as the odd- and even-order derivative terms do not coexist in the nonlinea
wave equations.
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