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Abstract

New transformations from the nonlinear sine-Gordon equation are shown in this Letter, based on them a new approach is
proposed to construct exact periodic solutions to nonlinear equations. It is shown that more new periodic solutions can be
obtained by this new approach and more shock wave solutions or solitary wave solutions can be got under their limit condition.
0 2002 Elsevier Science B.V. All rights reserved.
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1. New transformationsfrom sine-Gordon To get transformation from Eq. (2), we solve it in the
equation following frame

In Ref. [1], based on the sine-Gordon equation, a _
transformation u=u@), &=x-—c, ®)
d_‘” — sinw (1) wherec is wave velocity. Then Eg. (2) becomes
d§
was obtained and applied to solve nonlinear wave 2,

equations, many exact solutions have been got smce(c - co) 752 + fo sinu =0. (4)
then by that so-called sine—cosine method. We will §
explain in this Letter that this transformation is just Integrating this equation, we get
a special case under the limit condition. So we begin

with the sine-Gordon equation

Uy —céu”+fozsinu=0. (2) (E) + szw_ 2 (5)
" Corresponding author. where H is integration constanty = u/2. There are
E-mail address: fuzt@pku.edu.cn (Z. Fu). two cases to be considered:
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Casel. ¢?>c3 2. New approach to find exact solutionsto
nonlinear equations

2
Set 13 = 2f° » and H = 2A3m?, Eq. (5) can be
; R Many methods have been proposed to construct ex-
rewritten as y prop

act solutions to nonlinear equations for their important

dw : role in understanding the nonlinear problems. Among
— Vm2 —
dE troVm? —sirfo. (6) them there are the sine—cosine method [1], the homo-

geneous balance method [2—-4], the hyperbolic tangent

Eq. (6) is the first transformation we get from the expansion method [5-7], the Jacobi elliptic function

nonlinear sine-Gordon equation. Then setesis: expansion method [8,9], the nonlinear transformation
msing, Eq. (6) reads method [10,11], the trial function method [12,13] and
4 others [14-16].

@ _ +roy 1 —m2sirtg. (7) In the following, we will introduce another method
d§ based on the transformations given in the former
Case2. ?<c section. Consider a given nonlinear wave equation

N, ug, y, gy, Uyy,...)=0. (13)

Similarly, we can get
We seek its wave solutions in the frame of (3), then

d .
ao _ i /2 — co2w . ®) Eq. (13) can be rewritten as
d& 5

N du d _0 14
wherer2 = —12 andm’2 = 1 — m?, this is the second Y agr ) T (14)

transformation we get from the nonlinear sine-Gordon
equation. We can see that the transformation (1) is just
a special case of transformation (8) wheg™is taken
inEq. (8) andvy =1,m'2=1.

Actually, from Eq. (7) we know that the transfor- u(§) = ZCOS’ w(a;cosw + bjsinw) +aop, (15)
mation (6) admits the following solution j=1

andu (&) can be expressed as a finite series ofsin
and cosv, i.e., the ansatz

. where w satisfies transformations (6) or (8). In this
Sinw = £m SN(hok, m), €) Letter, we only consider the following case:

and then we get dow W (16)
— =vVm?— w,

dé
=+dn(\ 10
cosw N(xo§, m), (10) then
where siiAo&, m) and driiioé, m) are Jacobi elliptic 24
sine function and Jacobi elliptic function of the third d—sz = — CcOoswSinw. a7

kind, m andm’ are modulus and co-modulus, respec-
tively. Details about Jacobi elliptic functions can be And other forms for the transformations (6) or (8)

found in Appendix A and references therein. can be similarly applied to construct exact solutions
Similarly, the transformation (8) admits the follow- to nonlinear wave equations.

ing solution The highest degree of (15) is

cosw = +m’sn(r1&, m’), (11) O(u(®) =n, (18)

and then we get then the highest degree 9} can be taken as

sinw = +dn(ra, m'). (12) 0(5—2) =n+1, (19)
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and We know that
du d?u du dw
Olu—)=2n+1, ol — | = 2, i — i —,
(u dg) n + (dsz) n—+ dE (b1 CcOSw — ay SiNw) dE (26)
d3u d2 d2
ol — )= 3. 20 u_ ; @
<d$3> n+ (20) e (b1 cosw — alslnw)d—52

Thus we can seleetin (15) to balance the highest or- _ 2
der of derivative term and nonlinear term in (14). Then — (a1C0Sw + by SINw) (g)
substitute (15) into (14), determine the expansion co-
efficients and other undetermined constants, combine
the results from the transformation (16), one can got + 241 cOSw SIN® w + 2b1 Si° w, 27)
exact solutions to the given nonlinear equations.
We know that whemn” — 1, then the transforma-
tion (8) degenerates as the transformation (1), so the + (SaS + af)al COSw + Bapa1b1 COSw SiNw
solutions got from the above expansion contain the re- 2 2\ q
sults obtained by sine—cosine method given by [1]. + 3ag(bf — aj) it

= —(1 + mz)bl sinw — m2a1 COoSw

ud = (aS’ + 3aoaf) + 3(ag + a%)bl Sinw

+ (3bf — a?)ai coswsir
+ (b3 - 3ad)bysirtw. (28)
3. Applications
So substituting (25) into (23) yields

In this Letter, we will demonstrate the above ap- 3 )
proach on two examples: mKdV equation and system [—cao+a(ag + 3acaz) /3~ Co]

of variant Boussinesq equations [2]. + [—cb1+ a(ad +a?)by — B(1+m?)b1] sinw
3.1. mKdV equation +[~car + o(3ag + af)ar/3 — pm*as] cosw

+ 2aagaiby COSw Sinw + aao(bi — a%) sirfo

+ [a(3b% — a%)a1/3 + Z,Bmzal] Cosw Sin @

+ [a(bF — 3a2)b1/3+ 2Bm?p1 | siPw =0, (29)

mKdV equation reads

u; + auzux 4 Buyxx =0. (21)

Substituting (3) into (21) yields ) o _ )
from which set the coefficients 6€osw sinw)?, sinw,

du odu d%u COSw, COSw SiNw, SiNf », Cosw sinf w and siff w to be
—c— 4 au"— + B—==0. (22) . )
dg d& dg3 zeros, we can get the algebraic equations abgut;,
Integrating this equation yields b1, Co ande
d2 —cag + a(ad + 3apa?) /3— Co =0, 30a
—cu+ 2ud+ B3 = Co, (23) 0+ 0(ag +3aoa1) /3= Co (302)
3 d§ —cb1 + a(ag + af)bl — ,8(1 + mz)bl =0, (30b)
where(Cy is integration constant. _ 3,42 2 3_ Bm2a1 =0 30c
Considering (18), (19) and (20) to balance the < % + (34 +ag)ar/3 - pm°ar =0, (30¢)
highest order of derivative term and nonlinear term 2wxaoaib1 =0, (30d)
in (23), we can get aao(bf _ a2) =0, (30e)
n=1, (24)  «(3bF - ad)ar/3+ 2Bm%a1 =0, (30f)
so the ansatz solution of (21) in term of sirand  «(b? — 3a?)b1/3 4 28m?b1 = 0. (30g)

Cosw is
Solving Egs. (30a)—(30g) yield the following solu-

u =ag+ a1 CoSw + b1 Sinw. (25) tions for two cases:
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Casel. a1=0

Co=0, ap=0,

b=+ —i—ﬂ, c=—(1+m?8. (31)
Case2. b1=0

Co=0, ap=0,

a1 = :I:\/Gaz, c=—m?B. (32)

Thus the periodic solutions of (21) are

ulzblsinwzi,/—i—ﬂmsr‘(x —ct), (33)

and

up = a1CoSw = £,/ 6—’3 dn(x — ct). (34)
o

Whenm — 1, sr¢ — tanhé and drg — sechg, so

Integrating system (39) yields

H+H +d2” 0
—c u+—=0,
dE?

—cu+H+u2/2=0.

(40a)

(40b)

where integration constants are set to be zero.
We suppose the ansatz solution to system (40) is

ni
H(E) =) cod tw(a;cosw+b;sinw)
j=1
=+ ao, (41a)

ny
uE) = Z cod 1w (A; cosw + B; sinw)
=1

+ Ao, (41b)

wherew satisfies the transformation (16).
Substituting (41) into (40) to balance the nonlinear
term and highest degree differential term giugs= 2

the solutions (33) and (34) degenerate as another twoandnz = 1.

solutions
6

ugzi,/——ﬂ tanh(x — ct), (35)
o

and

Ug = :I:\/GO[z sechx — ct), (36)

which are shock wave solution and solitary wave

solution, respectively.

3.2. System of variant Boussinesg equations

System of variant Boussinesq equations reads [2]

H, + (Hu)y + tyer =0, (387a)
uy + Hy +uu, =0. (37b)
We solve it in the following frame
H=H(§), u=u@), §=x-—ct. (38)
So system (37) can be rewritten as

dH d(H a3
_Af  dtHy | de (39a)

d& d& dgs

d dH d

Pl R e | (39b)

So the ansatz solution to system (37) is

H(€) = ag + a1 CoSw + b1 Sinw + a» oL w
+ by Sinw cosw, (42a)

u(§) = Ao+ A1C0Sw + BiSinw. (42b)

Substituting ansatz solution (42) into system (40)
results in
[—c(ao + ap) +apAo+ azAo + alAl]

+ [—ca1+ (a1Ao + apA1 + azA1) — m?A1] cosw

+ [—cb1 + (b1Ao + boA1 + aoB1 + azB1)

- (1 — m2) Bl] sinw

+ [—cb2 + (b2A0 + b1A1 + a1 B1) ] cosw sinw

+ [cag + (b1B1 — a2Aq — alAl)] sirfw

+ [(b2B1 — azA1) + 2A1] coswsir’ »

+ [~ (b2A1+ a2B1) + 2B1]sifw =0,
[—cAo+ (a0 +a2) + (A5 + AF) /2]

+[—cA1+ a1+ ApgA1] cosw

+ [—cB1+ b1+ AgB1] Sinw

+ [b2 + A1B1] cOsw Sinw

+ [—az+ (Bf — A3) /2] sirf» = 0.

(43a)

(43b)
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Setting the coefficients ofcoswsinw)?, sinw,
COSw, COSwSiNw, Sifw, coswsifw and sifw to
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H3 = ag + a» COF w + b COSw Sinw

=m? — 1+drP & +imdné sng, (50a)

be zeros, we can get the algebraic equations about,; — Ay + A1 cosw + By sinw

expansion coefficients ard

—c(apg+ ap) + agAo + a2Ag +a1A1 =0, (44a)
—cay + (a1Ao + apA1 + arA1) — m2A1 =0, (44b)
—cb1+ (b1Ao + b2A1 + aoB1 + az2B1)

—(1+m?) B =0, (44c)
—cby + (b2Ag + b1A1+a1B1) =0, (44d)
caz + (b1B1 — a2Ao — a1A1) =0, (44e)
(b2B1 — azA1) +2A1 =0, (44f)
—(b2A1+ az2B1) +2B1 =0, (449)
—cAo+ (ap+a2) + (Aé + A%)/Z =0, (44h)
—cA1+ a1+ AgA1=0, (441)
—cB1+ b1+ AgB1 =0, (44))
b+ A1B1 =0, (44Kk)
—ap + (BZ — A%)/2=0, (44)

from which solutions for the three cases can be got.

Casel. Bi=ai1=b1=b=0

A0=C, A1=:|:21,
ap=m?—2, a=2, (45)
wherei = /—1.
Case2. A1=a1=b1=b2=0
AO =c, B]_ = :|:2,
apo=m?>—1, ar=2. (46)
Case3. a1=b1=0
Ao =c, A= =i, B1 = —sgn(+£i) - sgn%i),
apg= m2 — 1, a>»=1, by = +i. 47

Then the solutions to system (37) can be got as
follows:

Hi=ag+a2cofw=m?—2+2drfé, (48a)
uy = Ao+ A1C0sw =c +2idng, (48b)
H2=a0+a200§w=m2—1+2dl’12$, (49a)
u» = Ao+ B1Sinw =c + 2m sng, (49b)

=c+idné —sgn+i) - sgn(i)m Sné. (50b)

Whenm — 1, sn— tanhé and dré — seckhg, so
under limit condition, the solutions above degenerate
as another three solutions

Hiy=2sech& — 1, (51a)
ugq = ¢ + 2i secke, (51b)
Hs =2secR¢, (52a)
us = ¢ = 2tanhg, (52b)
Hg = secif & + i seche tanhg, (53a)
ug=c tisecht —sgn=i) - sgn+i)tanhs.  (53b)

4. Conclusion

In this Letter, new transformations from nonlinear
sine-Gordon equation are obtained and based on them
a new approach is proposed to construct the exact
solutions to nonlinear equations. And it is shown that
the periodic wave solutions obtained by this method
can degenerate to generalized solitary wave solutions,
so other forms of transformations (6) or (8) may be
applied to get more new shock wave or solitary wave
solutions.
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Appendix A

Notice that

¢
1
(t)=/—d
! / V1—m2sirfg v

t=sing

1
J V(A= x2)(1—m2x2)

dx (A1)
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is called the Legendre elliptic integral of the first
kind, wherem is a parameter which is known as the
modulus. The inverse function= sing is called the
Jacobi elliptic sine function which is represented by

t =sing = snu. (A.2)

Similarly, +/1—1t2 and +/1—m?2t2 are defined as
the Jacobi elliptic cosine function and Jacobi elliptic
function of the third kind, respectively. They are
expressed as

V1-—r2=cnu,

respectively.

We see from (A.1) that whem — 0, shu, chu
and dr: degenerate as sin cosu and 1, respectively;
while whenm — 1, snu, cnu and dr: degenerate
as tanh, sechu and sech, respectively. Detailed
explanations about Jacobi elliptic functions can be
found in Refs. [17,18].

v1—m??2 =dnu,

(A.3)
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