Measuring Top-Quark Polarization in Top-Pair + Missing-Energy Events

Qing-Hong Cao Peking University

Reference:

E. L. Berger, Q.-H. Cao, J.-H. Yu, H. Zhang, Phys. Rev. Lett. 109, 152004 (2012)

Top-quark pair plus missing energy Typical collider signature in several NP models

 Minimal
 Supersymmetric extension of the Standard Model
 (MSSM)

- Little Higgs Model with T-parity (LHT)
- Universal Extra Dimension Model (UED)

Top quark is very special

• Large mass: 173 GeV ~ VEV (246GeV) $y_t \sim O(1)$

ss W+

b

• Short lifetime:

 $\begin{array}{c|c} \text{Top} & \overbrace{1}^{} & \overbrace{1}^{} & 1 \\ \hline 1 & 1 & 1 \\ \hline m_t & \overline{\Gamma_t} & \overline{\Lambda_{\text{QCD}}} \\ 5 \times 10^{-27} \text{ s} & 5 \times 10^{-25} \text{ s} & 3 \times 10^{-24} \text{ s} \end{array}$

hadronization

• "bare" quark: spin info well kept among its decay products

Measuring *t*-polarization

• Traditional method of measuring top-polarization is through the angle between the charged lepton and top-quark spin.

The charged-lepton tends to *follow* the top-quark spin direction.

HFCPV 2012

Charged lepton distribution

• In the rest frame of the top-quark

Top-quark momentum has to be known

Top-quark reconstruction

• The charged leptons produced always in association with an invisible neutrino

$$p_x^{\nu} = E_T(x) \quad p_y^{\nu} = E_T(y) \quad m_{\nu} = 0$$

 p_z^{ν} unknown

• W-boson on-shell condition

$$m_W^2 = (p_\ell + p_\nu)^2$$

$$\implies p_z^{\nu} = \frac{1}{2(p_T^e)^2} \left[A \, p_z^e \pm E_e \sqrt{A^2 - 4 \, (p_T^e)^2 \, E_T^2} \right]$$

$$A = m_T^2 + 2 \, \vec{n}_T^e \cdot \vec{E}_T$$

- 1

Difficulty in $t\bar{t} + \not E_T$ events

• It is impossible to reconstruct a top-quark in the leptonic-decay mode. Angular distribution of the charged-lepton cannot be used.

Masses and spins of T_{-} and A_{H} are unknown.

Our goal

- is to find a method to measure top-quark polarization without knowing top-quark kinematics.
- Advantages of our method:
 - \checkmark It is sensitive to the top-quark polarization.
 - ✓ It is not sensitive to the mass splitting between a heavy resonance parent and the DM candidate, provided that this splitting is not too small.
 - ✓ The difference between t_L and t_R is not sensitive to the spin of a heavy parent resonance *or* to the collider energy.

Charged lepton distribution

• In the rest frame of the top-quark

The energy and angle are correlated once top-quark is boosted in the Lab frame

Qing-Hong Cao

HFCPV 2012

Lepton energy and top-quark polarization

\star Lepton energy distribution is sensitive to top quark polarization.

$$\frac{d\Gamma(\hat{s}_{t})}{dx} = \frac{\alpha_{W}^{2}m_{t}}{64\pi AB} \int_{z_{\min}}^{z_{\max}} x\gamma^{2}[1 - x\gamma^{2}(1 - z\beta)] \times \left(1 + \hat{s}_{t}\frac{z - \beta}{1 - z\beta}\right) \operatorname{Arctan}\left[\frac{Ax\gamma^{2}(1 - z\beta)}{B - x\gamma^{2}(1 - z\beta)}\right] dz$$

$$A = \frac{\Gamma_{W}}{m_{W}} \qquad B = \frac{m_{W}^{2}}{m_{t}^{2}} \approx 0.216$$

$$\gamma = \frac{E_{t}}{m_{t}} \qquad \beta = \sqrt{1 - 1/\gamma^{2}}$$

$$z_{\min} = \max[(1 - 1/\gamma^{2}x)/\beta, -1]$$

$$z_{\max} = \min[(1 - B/\gamma^{2}x)/\beta, 1]$$

Lepton energy and top-quark polarization

• Define a variable \mathcal{R} to quantify the difference between t_L and t_R

R distribution

Lepton energy and top-quark polarization

• Identical decay chains

$$x'_{\ell} = 2E_{\ell^+} / \frac{E_{\bar{t}}}{E_{\bar{t}}}$$

Toy model mimicking MSSM

• MSSM like:

$$\mathcal{L}_{\tilde{t}t\tilde{\chi}} = g_{\text{eff}}\tilde{t}\tilde{\chi}(\cos\theta_{\text{eff}}P_L + \sin\theta_{\text{eff}}P_R)t$$

Collider signature $b\bar{b}jj\ell^+E_T$

• Major SM backgrounds

Collider simulation

Basic selection cuts
p^ℓ_T > 20 GeV p^j_T > 25 GeV
∉_T > 25 GeV ΔR_{jj,ℓj} > 0.4
|η_{ℓ,j}| < 2.5
Hard cuts

 $g \longrightarrow \overline{t} \qquad \frac{\tilde{t}}{t} \qquad \frac{\tilde{\chi}_0}{t} \qquad \frac{b}{\ell^+} \qquad \frac{v}{\ell^+} \qquad \frac{\bar{t}}{\tilde{t}} \qquad \frac{\bar{t}}{\tilde{\chi}_0} \qquad \frac{\bar{t}}{\bar{b}} \qquad \frac{j}{j}$

 $m_{\tilde{t}} = 360 \text{ GeV} \ m_{\tilde{\chi}} = 50 \text{ GeV}$

• $\bar{t} \rightarrow 3j$ reconstruction (Minimal- χ^2 theme) Loop over all jet combinations and pick up the one minimize $\chi^2 = \frac{(m_W - m_{jj})^2}{\Delta m_W^2} + \frac{(m_t - m_{jjj})^2}{\Delta m_t^2}$

Signal versus Backgrounds

 Cross section (fb) of signal and backgrounds at 14TeV LHC

	Basic	t_{had} recon.	Hard	$\not\!$	$\epsilon_{ m cut}$
signal	22.26	18.46	8.87	6.51	11.6 %
$t\overline{t}$	4347.08	3596.75	154.47	0.91	0.00556%
$t\bar{t}Z$	1.25	1.03	0.34	0.22	5.9~%

• E_T solution cut -

Top-quark reconstruction

• The charged leptons produced always in association with an invisible neutrino

$$p_x^{\nu} = E_T(x) \quad p_y^{\nu} = E_T(y) \quad m_{\nu} = 0$$

 p_z^{ν} unknown

• W-boson on-shell condition

$$m_W^2 = (p_\ell + p_\nu)^2$$

$$\implies p_z^{\nu} = \frac{1}{2(p_T^e)^2} \left[A \, p_z^e \pm E_e \sqrt{A^2 - 4 \, (p_T^e)^2 \, \not\!\!E_T^2} \right]$$
$$A = m_T^2 + 2 \, \vec{n}_T^e \cdot \vec{E}_T$$

- 1

Signal versus Backgrounds

• Cross section (fb) of signal and backgrounds at 14TeV LHC

	Basic	t_{had} recon.	Hard	$\not\!$	$\epsilon_{ m cut}$
signal	22.26	18.46	8.87	6.51	11.6 %
$ t\bar{t}$	4347.08	3596.75	154.47	0.91	0.00556%
$t\bar{t}Z$	1.25	1.03	0.34	0.22	5.9~%

• E_T solution cut -

$$p_z^{\nu} = \frac{1}{2(p_T^e)^2} \left[A \, p_z^e \pm E_e \sqrt{A^2 - 4 \, (p_T^e)^2 \, E_T^2} \right]$$

 $A \equiv m_W^2 + 2 \, \vec{p}_T^{\ e} \cdot \vec{E}_T$

$$A^2 - 4 \, (p_T^e)^2 \, \not\!\!\! E_T^2 \le 0$$

Qing-Hong Cao

\mathcal{R}' distribution

• t_L and t_R are separated

LHC: 14 TeV, 100fb⁻¹

Summary

- The long ignored lepton energy could also be used to measure top-quark polarization without reconstructing the top-quark kinematics.
- The information of the mass and spin of new heavy particles in the intermediate state is no longer needed.

Probe the interaction before mass and spin

THANK HANNE