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Abstract Multi-fractal behaviors of diurnal tempera-
ture range (DTR for short) from 100 stations over
China during 1956–2010 are analyzed by means of
multi-fractal detrended fluctuation analysis. By making
a Monte-Carlo simulation, we obtain two criterions
which can be used to decide whether a DTR series is
significantly multi-fractal or not. With these criterions,
different multi-fractal behaviors are found over the
north and the south of China, and Yangtze River is
roughly the dividing line. Over the north region, nearly
all the considered DTR series do not show multi-fractal
behaviors, while the results are completely the opposite
over the south. The findings are confirmed by the
scaling behaviors of the corresponding DTR magnitude
series and indicate that more scale-dependent structure
differences may be hidden in DTR series over the north
and the south of China. Therefore, an extensive analysis
of the multi-fractal behaviors are essential for a better
understanding of the complex structures of the climate
changes.

1 Introduction

It has been recognized that long-term persistence (or
fractal behaviors) are ubiquitous in nature. Such as in
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climate system, due to the complex interactions oc-
curring on the land surface, ocean, and cryosphere,
climate processes usually exhibit long-term persistence,
which can be characterized by a Hurst exponent H >

1/2 [measured by the rescaled range (R/S) analy-
sis] (Hurst 1951; Koscielny-Bunde et al. 1998; Peng
et al. 1994, 1995). In this case, the autocorrelation
function C(s), where s is lag time, decays as C(s) ∼
s−γ , 0 < γ < 1, with the mean correlation time s× =

1
C(0)

∫ ∞
0 C(s)ds diverges (Kantelhardt et al. 2001;

Koscielny-Bunde et al. 1998). In the power spectral
analysis, this long-term persistence can also be char-
acterized by a power law, S( f ) ∼ f −β , where S( f ) =
|x( f )|2 is the power spectral density, and {x( f )} , f =
0, ..., N/2, is the Fourier transform of the records {xi}
(Talkner and Weber 2000; Weber and Talkner 2001).
According to Koscielny-Bunde et al. (1998), Talkner
and Weber (2000), and Weber and Talkner (2001),
it has been proved that β = 1 − γ = 2H − 1. For sta-
tionary long-term persistent processes where 1/2 <

H < 1, one can find 0 < β < 1, which means the long-
term persistence process is between the white noise
(β = 0) and the 1/f noise process (β = 1). One calls
this long-term persistent processes as “pink noise.”
However, in the climate research, the (conventional)
methods mentioned above may fail when trends are
present in the system (such as the warming trend in
temperature records). Normally, an increasing trend
may lead to an overestimation of the Hurst exponent
H and thus to an underestimation of γ (Kantelhardt
et al. 2001; Koscielny-Bunde et al. 1998, 2006). It is
even possible that, under the influence of a trend,
uncorrelated data may be mistaken as long-term cor-
related ones by using the (conventional) methods.
In the past two decades, several methods such as



674 N. Yuan et al.

wavelet techniques (WT) (Koscielny-Bunde et al. 1998)
and detrended fluctuation analysis (DFA) (Eichner
et al. 2003; Kantelhardt et al. 2001; Peng et al. 1994)
have been developed and widely used due to their
robustness to trends (Chen et al. 2007; Eichner et al.
2003; Fraedrich and Blender 2003; Király et al. 2006;
Király and Jánosi 2005; Lennartz and Bunde 2009,
2011; Malamud and Turcotte 1999; Monetti et al. 2003;
Rybski et al. 2006, 2008; Weber and Talkner 2001; Yuan
et al. 2010). In DFA, one considers the cumulated sum
(“profile”) Yi = ∑i

j=1 x j of the record of interest {x j}.
After eliminating the polynomial trend in segments
of length s of the profile, one can determine the de-
pendence of the mean fluctuation function F(s) on s.
For the case of long-term correlations, F(s) increases
by a power law, F(s) ∼ sα , α = 1 − γ /2, where α >

1/2, and is consistent with H in mono-fractal series.
However, the above-mentioned detrending approaches
are still not sufficient to fully characterize the com-
plex dynamics of climate systems. Sometimes infinite
exponents are needed to depict the different scaling
behaviors from large fluctuations to small fluctuations
(Kantelhardt et al. 2002). Such as in the spectral analy-
sis, two time series that have the same power spectral
density can still show different scaling behaviors be-
tween large and small fluctuations since the phases in
{x( f )} may induce nonlinear properties in the origi-
nal data {xi} (Ashkenazy et al. 2001, 2003; Govindan
et al. 2007). This indicates a multi-fractal behavior,
which is independent of the mono-fractal(or two-point
linear long-term persistence) but is associated with the
nonlinear properties (Barabasi and Vicsek 1991; Ivanov
et al. 1999, 2001; Kantelhardt 2008; Schmitt et al. 1995).
It has been pointed out that to study the long-term per-
sistence of a climate process is essential and important
for the climate model evaluation and the improvement
of the understanding on the climate system (Blender
and Fraedrich 2003; Bunde et al. 2001; Fraedrich and
Blender 2003; Govindan et al. 2002; Vyushin et al.
2004). In this article, we mainly focus on the multi-
fractal (nonlinear) properties of the diurnal tempera-
ture range (DTR) over China in the last 50 years.

Diurnal temperature range, which is defined as the
difference between daily maximum and daily minimum
temperatures, is an important meteorological variable.
It has been recognized in the meteorological commu-
nity that, due to the asymmetric increasing trend of
the minimum and maximum temperatures, there is a
decreasing trend of DTR in the last few decades over
most regions of the world (Easterling et al. 1997; Liu
et al. 2004). Besides the decreasing trend, many other

properties have also been found during the last few
years, such as the weekend effect (Forster and Solomon
2003; Gong et al. 2006) and the long-term correlations
(Yuan et al. 2010). In an earlier work (Yuan et al.
2010), we have employed DFA to determine the scaling
behaviors of DTR for the last 50 years over China.
We found that the DFA exponent α are above 0.5 and
around 0.64. Although α varies over different regions
of China, the range for DFA exponent α is relatively
smaller than that of the mean, minimum, and maxi-
mum temperature. This suggests that remarkable geo-
graphical dependence may not exist if only two-point
long-term correlations are considered. However, as we
mentioned above, two time series with the same long-
term correlations may still show different multi-fractal
behaviors, which is related to the nonlinear properties.
In this article, we employ a multi-fractal generalization
of the detrended fluctuation analysis (MF-DFA), which
has been widely used lately (Bogachev et al. 2007; Feng
et al. 2009; Kantelhardt et al. 2006; Koscielny-Bunde
et al. 2006; Telesca et al. 2005) to the DTR records
during the last 55 years (1956–2010) over China to see
if the multi-fractal property of DTR has a remarkable
geographical dependence. We would like to note that,
other methods, such as the well-developed wavelet-
transform modulus maxima method, can also be used to
characterize the multi-fractal behaviors, and the accu-
racy of both methods are equivalent (Kantelhardt et al.
2002; Muzy et al. 1993; Oświecimka et al. 2006). In our
analysis, we apply MF-DFA but do not use approaches
or models as mentioned in Koscielny-Bunde et al.
(2006) and Kantelhardt et al. (2006), to estimate the
singularity spectrums. Instead, by using Monte-Carlo
simulations, we obtain two criterions which can be used
to decide whether a DTR time series is significantly
multi-fractal or not (for more details, see Section 2). In
the end, we further confirm our findings by analyzing
the fractal properties of the corresponding DTR mag-
nitude series, which is derived from the original DTR
series and has been considered as a good indicator of
the nonlinearity of original data (Kalisky et al. 2005; Lu
et al. 2012).

The rest of the paper is organized as follows. In
Section 2, we will make a short introduction of the
data sets and describe the method MF-DFA, as well as
the Monte-Carlo simulation we made. Results, in-
cluding the distribution of stations with different
multi-fractal behaviors and scaling behaviors of the
corresponding magnitude series are provided in
Section 3. In Section 4, discussions and conclusions are
made.
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2 Data and methodology

2.1 Data sets

In this article, daily minimum and maximum tempera-
ture (which is used to determine the diurnal tempera-
ture range) from 100 stations are used for our analysis.
The data are obtained from the China Meteorological
Data Sharing Service System (http://cdc.cma.gov.cn),
with length of 55 years, from 1956 to 2010. All the 100
meteorological stations are taking part in international
exchange, and the data have been homogenized (Li
et al. 2009). Since the length of the records is about
20,000 days, the scaling range we analyze is mainly from
100 to 1,000 days.

Before our analysis, we first eliminate the periodic
seasonal trend by (a) subtracting the seasonal cycle
Ti − 〈Ti〉, where Ti is the considered DTR), and 〈Ti〉 is
the mean DTR averaged from each calender data, and
(b) dividing Ti − 〈Ti〉 by the standard deviation for each
calendar date, as that of Kantelhardt et al. (2006),

τi = Ti − 〈Ti〉
〈
(Ti − 〈Ti〉)2〉1/2 (1)

where τi is the standardized record, which is used for
our multi-fractal analysis.

2.2 Methodology outline

2.2.1 Multi-fractal detrended f luctuation analysis

In MF-DFA (Kantelhardt et al. 2002), one consid-
ers the cumulated sum (“profile”) Yk = ∑k

i=1 τi of the
record {τi}. The profile series is first divided into non-
overlapping segments of equal length s indexed by k =
1, 2, 3, · · · , Ns, with Ns = [N/s]. Since the length of the
series is not always a multiple of s, as a result, there will
often remain a short part left at the end of the profile.
To solve this problem, the same procedure is repeated
from the other end of the record and then 2Ns segments
are obtained altogether. Next, in each segment ν, ν =
1, · · · , 2Ns, we determine the local trend by polynomial
fit and calculate the standard deviation around this fit:

F2
s (v) = 1

s

s∑

i=1

{Y [(v − 1) s + i] − yν (i)}2 , (2)

where yν (i) is the fitting polynomial in segment ν.
Linear, quadratic, or higher order polynomials can be
used in the fitting procedure, which corresponds to MF-
DFA-1, MF-DFA-2, etc. Kantelhardt et al. (2002) (In

this article, we use MF-DFA-3 for our multi-fractal
analysis). Then, an averaging procedure is performed
over all the segments to determine the qth order DFA
fluctuation function F(s),

F (s) =
[

1

2Ns

2Ns∑

ν=1

F2
s (ν)q/2

]1/q

, (3)

where the index variable q can take any real value.
For q = 2, the standard DFA procedure is retrieved.
For long-term correlated time series, Fq (s) increases
as a power-law: Fq (s) ∼ sH(q), where H (q) is the gen-
eralized Hurst exponent. When q is positive, H (q)

describes the scaling behavior of large fluctuations,
while small fluctuations determine H (q) when q is
negative. For a mono-fractal time series, H (q) is inde-
pendent of q, while for a multi-fractal time series, H (q)

varies with q. This is the so-called multi-fractal process
(Kantelhardt et al. 2002).

It is worth noting that when q = 0, we cannot deter-
mine H (0) directly by using Eq. 3. Instead, we can em-
ploy a logarithmic averaging procedure (Kantelhardt
et al. 2002),

F0 (s) = exp

{
1

4Ns

2Ns∑

ν=1

ln
[
F2

s (ν)
]
}

∼ sH(0). (4)

To characterize the multi-fractal properties of a time
series, one can link H (q) with the singularity spectrum
D (h) via a Legendre transform,

h = H (q) + q
dH(q)

dq
, (5)

and

D (h) = q(h − H(q)) + 1, (6)

where h is the singularity strength or Hölder exponent,
and D (h) denotes the dimension of the subset of the
series (Kantelhardt et al. 2002; Lin and Fu 2008; Muzy
et al. 1993). To calculate h and D (h) from H (q),
several methods, such as the generalized binomial mul-
tiplicative cascade model, are widely used. With these
methods, one can fit the relation between H (q) and q,
and further obtain the singularity spectrum D (h) and
the singularity strength h. The width of the singular-
ity spectrum �h is thus obtained to characterize the
strengths of multi-fractal behaviors (Feng et al. 2009;
Kantelhardt et al. 2006, 2002; Koscielny-Bunde et al.
2006).

However, we would like to note that the singularity
strength h (or the width of the singularity spectrum

http://cdc.cma.gov.cn


676 N. Yuan et al.

�h) obtained from the mentioned methods, such as
the generalized binomial multiplicative cascade model,
might be doubtable. First, since the typical length of
observed daily climate records is only around 104, we
cannot make |q| too large. Normally, the range of q
is selected as [−5, 5] or [−10, 10], depending on the
length of the considered record. Thus, the fit of the re-
lation between H (q) and q based on this small q range
may have problems in representing and predicting the
H (q) ∼ q behaviors when q is large (e.g., q = 20, 50,
or even larger). Furthermore, in MF-DFA, scaling be-
haviors of F(s) vs s fluctuate more tremendously for
large |q|, especially when q is negative. These relatively
large fluctuations due to poor statistics may lead to an
unreliable measurement of H (q), and thus may result
in an uncertain fitness of H (q) ∼ q. Therefore, one
should be very careful when trying to characterize the
strengths of multi-fractal behaviors. In our study, we
do not care how strong the multi-fractal behavior is
in each considered DTR series. We only ask whether
the considered DTR series shows significant multi-
fractal behavior (or nonlinear property) or not, and is
there a remarkable geographical dependence of the sta-
tions with significant and non-significant multi-fractal
behaviors.

2.2.2 Criterion for multi-fractal behaviors

In order to determine if a considered DTR series is
significantly multi-fractal or not, two criterions, �σ

and �0.95, are estimated by using Monte-Carlo simula-
tion. According to Yuan et al. (2010), the mean DFA2

exponent for DTR series over China is α = 0.64. There-
fore, artificial mono-fractal data with the same expo-
nent α are generated and the length is 20,000, which
is similar to the length of DTR series we analyze in
our study. Our main aim is to determine when MF-
DFA is applied to the mono-fractal data, the range of
H (q) due to uncertainty of the computation (or the
finite size effect). As Ashkenazy et al. (2001, 2003)
and Govindan et al. (2007) mentioned, the multi-fractal
behaviors (or the nonlinear properties) are related
with the phases in τ( f ), where {τ( f )} is the Fourier
transform of the records {τi}. One can randomize the
phases, but keep the power spectral density unchanged,
to remove the multi-fractal behaviors (or nonlinear
properties) hidden in the data. This is the so-called
phase randomize surrogate procedure (PRS). In our
study, we apply PRS to the artificial mono-fractal data
and repeat 1,000 times to obtain 1,000 time series char-
acterized by the same two-point correlation (or mono-
fractal behavior). Due to the randomization of the
phases, these 1,000 time series are all not characterized
by multi-fractal behaviors. Then we apply MF-DFA to
all these 1,000 time series with q ranges from −5 to 5.
Theoretically, since the time series are all mono-fractal,
H (q) should be independent of q and has the value of
0.64. However, due to the uncertainties we mentioned
above, the measured H (q) may have deviations from
0.64. In this way, for each q, we have 1,000 samples
to obtain a mean H (q) and its standard deviation σq

as error bars. Figure 1 shows the results. In Fig. 1a,
we can see that the standard deviation σq varies for
different q. Relatively higher σq can be found when q is

Fig. 1 Estimation of the computation of uncertainties for H(q).
From 1,000 artificial samples, the standard deviation σq for
different q is shown (a). Relatively higher σq can be found when
q is negative, and σq becomes stable when the number of sample
is larger than 400; the mean H(q) with error bars σq and R0.95
is shown b. The error bars σq are shown in black, which is used

to determine the first criterion �σ = 0.032. The error bars R0.95,
which are shown in blue, are the varying ranges of H (q) when
95 % of all the samples (2.5 % of the samples with the highest
H (q) and the other 2.5 % of the samples with the lowest H (q)

are excluded) are considered. With R0.95, one can estimate the
other criterion �0.95 ≈ 0.06
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negative, which may be due to the tremendous
fluctuation of F(s) as we mentioned above. Meanwhile,
σq also varies as a function of the sample numbers.
When the number of sample reach 400, σq becomes
stable. This indicates that the 1,000 time series we use
is enough for our estimation. Taking σq as an error bar
(black in Fig. 1b), one can estimate the range of H (q),
which may be due to the uncertainty of the computa-
tion. The range is defined as the difference between
the biggest [H (q) + σq] and the smallest [H (q) − σq].
In our work, it is �σ = [H (5) + σq=5] − [H (−5) +
σq=−5] = 0.032, where �σ can be used as a criterion for
determining whether a considered DTR series is multi-
fractal or not. Besides �σ , we further define another
criterion �0.95, which can be used to determine whether
the multi-fractal behavior is significant or not, within
the confidence probability of 0.95. See that in Fig. 1b,
the blue error bars R0.95 represent the varying range
of H (q) when 95 % of all the samples (2.5 % of the
samples with the highest H (q) and the other 2.5 %
of the samples with the lowest H (q) are excluded)
are considered. One can find �0.95 ≈ 0.06 from the
figure. Therefore, if the range of H (q) obtained from
a DTR series is larger than �0.95, one can say the multi-
fractal behavior is significant (within the confidence
probability of 0.95). If the range of H (q) obtained from
a DTR series is larger than �σ but smaller than �0.95,
we suggest that one can only say the considered DTR
series may be multi-fractal, but not so strong.

3 Results

In our study, we first employ MF-DFA to two rep-
resentative stations. One is Linxi station (44N, 118E),
which is located in the northeast of China, and the
other one is Guangzhou station (23N, 113E), which is
located in the southern of China. Linxi is in the con-
tinental monsoon climate zone, while Guangzhou is in
the subtropical monsoon climate zone. Therefore, the
climatic characteristics of the two places are completely
different. As for the multi-fractal behaviors, we can see
in Fig. 2 that H (q) in Linxi do not seem to depend on
q, while a more remarkable multi-fractal behavior can
be found in Guangzhou. Figure 2a, b show, in a double-
logarithmic plot, the fluctuations of F(s) as a function
of s for different q. The red lines are the fitness of the
fluctuations. One can see more clearly, in Fig. 2c, d,
that the slopes of the lines for Guangzhou varies more
remarkably for different q, and the values are ranged
from H (5) = 0.65 to H (−5) = 0.72 (see Fig. 2f). For
Linxi in Fig. 2e, there seems to be no changes in H (q).
The different results for the two representative stations

suggest that there may be different multi-fractal behav-
iors for stations over different regions or climate zones.
Therefore, we further consider 100 stations over China
in order to see if there is a geographical dependence of
the multi-fractal behaviors. By using the Monte-Carlo
simulation described above in Section 2.2, we have
determined two criterions �σ = 0.032 and �0.95 = 0.06
(see Fig. 1b), which means if the varying range of H (q),
�H, is larger than �σ = 0.032, the considered DTR
series may be characterized by multi-fractal. If �H >

�0.95 = 0.06, the multi-fractal behavior is significant.
In contrary, if �H < �σ = 0.032, we assume there are
no multi-fractal behaviors. Actually, there might be
weak multi-fractal behavior, but it is too weak for us
to distinguish from the cases with strong uncertainties
of the computation. We apply MF-DFA to all the 100
stations and calculate the varying range for H (q). A
geographical dependence of multi-fractal behaviors is
found in Fig. 3, where the open circles stand for the
DTR series with �H < �σ , which means no multi-
fractal behaviors can be detected, while solid circles are
stations where multi-fractal properties are found (with
�H > �σ ). Solid circles with larger size (as shown
in Fig. 3) are stations where the DTR series have
significant multi-fractal behaviors (with �H > �0.95).
Interestingly, we find a remarkable difference of DTR
multi-fractal behaviors over the south and the north
regions of China, and Yangtze River is roughly the
dividing line. In the north of Yangtze River, nearly all
the considered DTR series do not have multi-fractal
behaviors, while in the south of Yangtze River, the
results are completely the opposite. The range of H (q)

for most of the stations are larger than �σ , while some
of them even have significant multi-fractal behaviors
with �H > �0.95. Notice that there are no obvious
geographical dependence of the mono-fractal behav-
iors (Yuan et al. 2010); the results of the multi-fractal
behaviors shown in Fig. 3 may suggest more scale-
dependent and complex structure differences hidden in
DTR series. Therefore, the multi-fractal analysis seems
to be more important for us to understand and interpret
how the climate factors affect the DTR series.

In order to confirm our findings, we further apply
DFA2 to the corresponding DTR magnitude series |τi|,
where τi are the seasonal detrended DTR records (see
Eq. 1). DFA2 can be considered as a special case of MF-
DFA, when q = 2 and the local trend is estimated by a
quadratic polynomial fit (note that in the multi-fractal
analysis above, local trend in “profile” Yk are estimated
by a cubic polynomial fit (MF-DFA-3). Here, in the
memory analysis of the magnitude series, quadratic
detrending is enough for removing the effect of external
trend and obtaining reliable results). Many works have
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Fig. 2 MF-DFA results for two representative stations, Linxi
(left hand side) and Guangzhou (right hand side). a, b In a
double-logarithmic plot, the fluctuation F(s) as a function of s for
different q is shown. The red lines are the fitness of the slope.

c, d The fitness of the slope in a much clearer way. e, f The
variation of H(q) ∼ q. For different q, nearly no variation is
found in Linxi, while H(q) for Guangzhou varies more obviously

shown that the multi-fractal behaviors are related to
their nonlinear properties of the original data. This
nonlinearity can be estimated from the fractal behav-
iors in the corresponding magnitude series (Ashkenazy
et al. 2003; Kalisky et al. 2005; Lu et al. 2012). If the
magnitude series is long-term correlated with DFA2
exponent α > 1/2, we can consider the original records
being characterized by nonlinear properties. In con-

trast, if the magnitude series behaves as a white noise,
no pronounced nonlinear properties can be found in
the original records. Since multi-fractal behaviors have
close relations with this nonlinearity, to the end of
this section, we put our emphasis on the analysis of
the nonlinear properties, which is accessed from the
scaling behaviors in magnitude series. We again take
Linxi and Guangzhou as representative stations. For
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Fig. 3 Geographical
dependence of multi-fractal
behaviors for the DTR series
over China. Open circles
stand for the DTR series with
�H < �σ , which indicates no
multi-fractal behaviors can be
detected. Solid circles are
stations where multi-fractal
properties may exist
(�H > �σ ), while solid
circles with larger size are
stations where the DTR
series have significant
multi-fractal behaviors
(�H > �0.95). A clear
difference between the south
and the north is found, with
the Yangtze River roughly as
the dividing line

each station, we first apply the PRS procedure to
the seasonal detrended data τi. As described above in
Section 2.2, the nonlinearity can be eliminated when the
phases are randomized, but the power spectral density
(or the mono-fractal behavior) will remain unchanged.
Therefore, if τi is characterized by nonlinear properties,
the DFA results should be different between the mag-
nitude series |τi| and the new series obtained from PRS
procedure |τ PRS

i |. While for τi and the data from PRS,
τ PRS

i , the scaling behaviors should be the same. Figure 4
shows the results for Linxi (Fig. 4a) and Guangzhou
(Fig. 4b). The squares represent the DFA results of τi

(solid squares) and τ PRS
i (open squares), and the circles

are the results of magnitude series (solid circles for
|τi|, open circles for |τ PRS

i |). For Linxi, there are no
changes of the DFA results after the PRS procedure,
for both τi and magnitude series |τi|. Actually, the DFA
exponent α obtained from the magnitude series are α ≈
0.5, which indicates a white noise behavior. This means
that the DTR series observed in Linxi does not have
pronounced nonlinear properties, which is consistent
with our findings in Fig. 2. While for Guangzhou, al-
though, as expected, no changes are found in the DFA
results for τi and τ PRS

i , significant deviations of the
DFA curves, however, arise for the magnitude series.
Before the PRS procedure, the magnitude series |τi|

Fig. 4 DFA2 results for the seasonal detrended DTR {τi},
the data after the phase randomize surrogate procedure (PRS){
τ PSD

i

}
, and the corresponding magnitude series {|τi|},

{|τ PSD
i |}.

Squares represent the DFA results of original data: (solid square
for {τi} and open squares for

{
τ PSD

i

}
); and circles are the results

of magnitude series: (solid circles for {|τi|} and open circles for

{|τ PSD
i |}). a Results of Linxi, where no changes of the DFA re-

sults are found after the PRS procedure for both the {τi},
{
τ PSD

i

}

and magnitude series {|τi|},
{|τ PSD

i |}. b Results of Guangzhou,
after the PRS procedure, where we can see clear deviations in
the DFA curves for the magnitude series. The black line in both
figures have a slope of 0.5
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Fig. 5 DFA2 exponent αMag of magnitude series {|τi|} obtained
from all the considered 100 stations. a Relations between αMag
and the varying range of H (q), �H. One can see that stations
with higher �H have bigger chances to have higher αMag. b All
the stations are divided into two groups according to Fig. 3. Sta-

tions which do not have multi-fractal behaviors (�H < �σ ) are
in group 1, while the other stations with multi-fractal behaviors
(�H > �σ ) in group 2. One can find relatively higher DFA2
exponents αMag in Group-2

has a DFA exponent of α = 0.62, but after the PRS
procedure, the DFA exponent becomes much smaller,
with α ≈ 0.5. According to Kalisky et al. (2005) and
Lu et al. (2012), this result indicates a pronounced
nonlinearity behavior in the DTR series observed in
Guangzhou, which again keeps in line with our findings
in Fig. 2. By comparing Fig. 4 with Fig. 2, we could also
suggest that the scaling behaviors of magnitude series is
a good indicator of the nonlinearity or the multi-fractal
property of a considered original time series. We fur-
ther consider the scaling behaviors of magnitude series
obtained from all the 100 stations. Figure 5a shows the
relations between the DFA exponents of the magnitude
series αMag and the corresponding �H obtained above.
One can easily find that for higher �H, the αMag have
a big chance to become also higher. If we classify all
the stations into two groups according to Fig. 3, where
stations without multi-fractal behaviors (�H < �σ ) are
in group 1 (75 stations) and stations with multi-fractal
behaviors (�H > �σ ) are in group 2 (25 stations), we
can see the DFA exponents are relatively higher in
group 2 than that in group 1 (see Fig. 5b). By comparing
with Fig. 3, the results suggest that the scaling behaviors
of magnitude series are indeed a good indicator of the
nonlinear properties (or multi-fractal behaviors) of the
considered data τ . Furthermore, based on these two
figures, one can believe that the multi-fractal behav-
iors (or the nonlinear properties) of DTR are indeed
different over the north and the south of China.

4 Discussion and conclusion

It is not surprising that there are significant differences
of the climate conditions over the north and the south

of China. Factors like the latitude, continent–ocean lo-
cations, and the terrain conditions, etc. are all different
and can further result in different characteristics of the
climate change. As in the south, climate processes may
be more affected by multi-scale processes than that
in the north due to the influence of the tropical con-
vective activities, monsoon, the effect of Qinghai-Tibet
Plateau, and even the ENSO happens in the Pacific,
etc. Wu and Zhang (1998), Wang et al. (2008, 2000), Wu
et al. (2007). All these strong factors may be responsible
for the nonlinearities in the climatic variabilities over
the south of China.

Since the nonlinear properties might be more sig-
nificant in the south of China than that in the north, one
may directly wonder if we can find some hints of the
nonlinearities from the original series. Figure 6 shows
the DTR series obtained from Linxi (one station from
the north of China) and Guangzhou (one station from
the south of China). One can find that the fluctuations
in Linxi are relatively more uniform, while more cluster
structures arose in Fig. 6b (for Guangzhou). This cluster
structure might be one manifestation of the nonlinear
properties, and a multi-fractal analysis may be useful
for our understanding of the nonlinear properties.

In this article, we employ the MF-DFA to the DTR
of the past 55 years over China. Interestingly, different
multi-fractal behaviors of DTR are found over the
south and the north of China, and the Yangtze River
is roughly the dividing line. In the north of Yangtze
River, nearly all the considered DTR series do not
show multi-fractal behaviors (with �H < �σ ), while in
south of Yangtze River, the results are completely the
opposite. By further analyzing the fractal behaviors of
the magnitude series |τi| by means of DFA2, we find
that the DTR series observed from south of Yangtze
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Fig. 6 Segments of the DTR series {τi}. a Linxi. b Guangzhou.
One can find that the fluctuations in Linxi are relatively more
uniform, while more cluster structures arose in the series of
Guangzhou

River do show significant nonlinear properties, which
indicates a close relationship between the nonlinear
property and the multi-fractal behavior. Therefore, the
multi-fractal behaviors, which can be determined from
MF-DFA easily, could be considered as a good man-
ifestation of the nonlinear properties. Through multi-
fractal analysis, one can get more information from the
climate processes than in cases when only mono-fractal
analysis are made. Thus, for better understanding of
the complex structures of climate change or better
evaluations of the climate models, multi-fractal analysis
is essential and important.
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