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Long term memory (LTM) in climate variability is studied by means of fractional integral techniques. By
using a recently developed model, Fractional Integral Statistical Model (FISM), we in this report proposed a
new method, with which one can estimate the long-lasting influences of historical climate states on the
present time quantitatively, and further extract the influence as climate memory signals. To show the
usability of this method, two examples, the Northern Hemisphere monthly Temperature Anomalies
(NHTA) and the Pacific Decadal Oscillation index (PDO), are analyzed in this study. We find the climate
memory signals indeed can be extracted and the whole variations can be further decomposed into two parts:
the cumulative climate memory (CCM) and the weather-scale excitation (WSE). The stronger LTM is, the
larger proportion the climate memory signals will account for in the whole variations. With the climate
memory signals extracted, one can at least determine on what basis the considered time series will continue
to change. Therefore, this report provides a new perspective on climate prediction.

C
limate memory has been a well known concept ever since the middle of last century1. Affected by the slowly
responding subsystems (such as the ocean), the climate variability usually exhibits long-term memory
(LTM), which means the present climate states may have long-term influences on the states in far future.

Normally, this kind of characteristic is considered as fractal properties or scaling behaviors in climate2. During the
past few decades, benefited from the development of nonlinear techniques, many methods have been proposed
for better diagnosing this characteristic, including spectral analysis2,3, structure function method4, wavelet ana-
lysis (WA)5, as well as methods based on random walking theory, such as the rescaled-range (R/S) analysis1, and
detrended fluctuation analysis (DFA)6, etc. With these methods, extensive researches have been done in the past
few years, which were mainly focused on i) the diagnosis of fractal and multifractal properties in different climatic
variables7–13, ii) the influence of LTM on the internal stochastic trends and clustering of extremes14–18, and iii) the
capability of climate models in reproducing the scaling behaviors in different scales19–24, as summarized by25.
However, on the question of whether one can improve the climate predictability by using the diagnosed scaling
behaviors, or more vividly, climate memory, only few explorations have been made26.

Ever since the concept of stochastic climate model was first introduced by27 in 1976, one begins to believe that
the low frequency variability (LFV) of climate can be explained as the integral response to continuous random
excitation by short period weather-scale disturbances (weather noise). The climate-weather system was summar-
ized in terms of the Brownian motion analogy28,

dx
dt

~e tð Þ, ð1Þ

where e represents the ‘‘weather-scale’’ excitations, and x stands for ‘‘climate-scale’’ variability. However, after
years of research, it has been noticed that calculations simply based on one-order integration sometimes cannot
provide satisfactory simulations of many natural time series, especially when modeling time series with different
fractal properties or LTM strengths. Therefore, by using fractional integral techniques, we recently established a
new statistical model, Fractional Integral Statistical Model (FISM)29. FISM is actually based on fractional
Brownian motion, which was first introduced by Kolmogorov in 1940 in30. With this model, one can reproduce
LTM (or fractal properties) of any given climatic time series. By applying the Riemann-Lioville fractional integral
formula, the model can be written explicitly as,
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x tð Þ~ 1
C qð Þ

ðt

0

e uð Þ
t{uð Þ1{q du, ð2Þ

where t stands for the present time point, u stands for a historical
time point, t 2 u represents the distance between the historical time
point u and the present time t, and C(q) denotes the Gamma func-
tion. The fractional integration starts from u 5 0, which stands for
the beginning of history. It is worth to note that normally people
prefers to use negative infinity (2‘) as the beginning of history, since
it is more convenient for understanding and interpreting. But con-
sidering further technology requirements (see the ‘‘Results’’ section
and the ‘‘Methods’’ section), we choose to use u 5 0, supposing that
we know the starting point of history (more detailed discussion can
be found in the ‘‘Results’’ section). By adjusting the integral-order q,
one can simulate the climate-scale variability x(t) with proper LTM.
Different q-values determine different LTM strengths of x(t). For
quasi-Gaussian processes, it is easy to prove that q has one-to-one
relations with other exponents such as the DFA exponent a
(Detrended Fluctuation Analysis, a widely used method which can
detect the strength of LTM6,31,), or the PSD exponent b (Power
Spectrum Density Analysis)32, as

2q~b~2a{1, ð3Þ

q 5 0 means there is no integration procedures, the simulated cli-
mate-scale variability x(t) has no memory and acts as white noise (a
5 0.5, b 5 0). While q . 0 means the climate-scale variability is
simulated by applying q-order integration to the weather-scale
excitation e(u), which will simultaneously introduce the so-called
long-term memory into x(t) (a . 0.5, b . 0) (see Fig. 2 in29).
Therefore, the Fractional Integral Statistical Model (FISM) can be
considered as a useful model in simulating LTM in climate. Although
the statistics in this model are quasi-Gaussian, complex features such
as intermittency, multifractality have not been taken into account,
due to its reasonable physical framework as described above, we
believe this model also useful in further studying LTM in climate.

Based on this model, combine with the concept of stochastic
climate model proposed by27, one can see clearly that, the ‘‘climate-
scale’’ variability is considered as q-order integrations of ‘‘weather-
scale’’ excitations. That is, to express it more explicitly, the WSE has
long-lasting influences on the climate states. From this perspective, a
new understanding of the climate variation can be reached, that is,
any given climatic time series can be decomposed into two compo-
nents: the cumulative climate memory signals (CCM) and the
weather-scale excitation (WSE)29,

x tð Þ~M tð Þze tð Þ: ð4Þ

M(t) represents the cumulative climate memory signals (CCM),
which is the cumulated long-lasting influences integrated from his-
torical WSE, while e(t) stands for the present weather-scale excitation
(WSE). Both the cumulative climate memory signals (CCM) and the
present weather-scale excitations (WSE) composes the present cli-
mate states. If one can calculate the memory signals M(t) and further
estimate the influences of historical information quantitatively, our
climate prediction skills will have a high probability to be improved.
At least, we can determine on what basis the considered climate states
will continue to be triggered by the present weather scale excitations.
Therefore, how to extract the climate memory signals is our main
focal point of this study.

Suppose we do not know the present state of x(t), with FISM,
theoretically the memory signals can be calculated from the historical
WSE as,

M tð Þ~ 1
C qð Þ

ðt{d

u~0

e uð Þ
t{uð Þ1{q du ð5Þ

Where e 0ð Þ,e dð Þ, � � � ,e t{dð Þ are the historical WSE, and d is the
sampling intervals of the observed time series. The difference
between equation (5) and equation (2) is that we only use the his-
torical WSE to calculate the memory signals M(t). As for the integra-
tions from t 2 d to t, considering the sampling interval d and the
singular nature of equation (2), we choose to use the present WSE,
e(t), to replace the integration from t 2 d to t. From mathematical
point of view, this procedure may be problematic, but from a prac-
tical point of view, it is reasonable since i) the integration will always
need a cutoff due to the discrete sampling and the singularity; ii) even
if we can divide the interval (t 2 d to t) into small pieces with width of
Dd, the estimated integrating factor (we also name it as memory
kernel, see the following),

k~
Xd{Dd

t~Dd

dl

C qð Þ d{lð Þ1{q, ð6Þ

is really around 1 (figures not shown here); and the most impor-
tantly, iii) it is in line with our above understandings, that any cli-
matic time sereis is composed by historical cumulated influence M(t)
and the present WSE e(t). Therefore, equation (2) can be further
written as,

x tð Þ~ 1
C qð Þ

ðt{d

u~0

e uð Þ
t{uð Þ1{q duze tð Þ, ð7Þ

or even in a discrete form,

x tð Þ~K qð Þdt 6Yt{d
0 ze tð Þ, ð8Þ

where K qð Þdt : k q; tð Þ,k q; t {dð Þ, � � � ,k q; t {uð Þ, � � � ,k q; dð Þf g,
k q;t{uð Þ~ 1

C qð Þ t{uð Þ1{q , represents the integrating factor of

every single step, and Y: e 0ð Þ,e dð Þ, � � � ,e uð Þ, � � � ,e t{dð Þf g, repre-
sents the WSE at each historical time point. It is worth to note that the
superscript and subscript of K qð Þdt denote the time distances between
historical time points and the present time, like t 2 u in equation (2),
from t 2 u 5 t (corresponding to u 5 0) to t 2 u 5 d (corresponding
to u 5 t 2 d), while the superscript and subscript of Yt{d

0 denote the
historical time point, like u in equation (2), from u 5 0 to u 5 t 2 d.
Since the integrating factor k(q; t 2 u) describes to what extent the
historical WSE e(u) may affect the present state x(t), we name it as the
Memory Kernel (MK for short), see29. Obviously, MK is controlled by
the integral-order q, or more precisely, by the strength of LTM. To
extract the memory signals, one thus needs to make an accurate
estimation of the historical WSE first. A general idea is that we
may derive equation (8) reversely and obtain the historical WSE
(time) point by (time) point from the historical observations
x 0ð Þ,x dð Þ, � � � ,x t{dð Þ. With the estimated historical WSE, one thus
can calculate the memory signals simply by using equation (5).
Although we cannot make an estimation of the present WSE, the
memory signals originated from the historical information are still
important and useful for the climate prediction.

In the following, we will make a detailed discussion on this issue.
We first make a simple test to determine whether the historical WSE
can be estimated by deriving equation (8) reversely, and under what
conditions the estimation is accurate enough for a further extraction
of climate memory. Then two examples, the Northern Hemisphere
monthly Temperature Anomalies (NHTA) and the Pacific Decadal
Oscillation index (PDO), are used to illustrate how to extract climate
memory by using FISM. Obviously, the stronger climate memory is,
the larger proportion CCM should be in the whole variations of x(t),
therefore, this work suggest a new perspective on improving the
climate prediction skills. For the whole procedures of how to extract
the climate memory signals, a brief description can be found in the
end of this paper.
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Results
Estimation of the historical WSE. From the above discussion, a
general idea to extract the historical WSE is to derive equation (8)
reversely. Suppose t 5 0 is the beginning of history, the climate state
thus will not be influenced by memory signals, and x(0) 5 e(0). For
the next time point t 5 d, from equation (8), e(d) will be calculated as
e(d) 5 x(d) 2 K flY. In this way, one can extract the historical WSE
point by point exactly. However, before extracting, two crucial issues
need to be addressed. Firstly, one needs to know exactly the starting
point of history; and secondly, one should have the observations
from the starting points of history till now. As for the first issue, it
is impossible to find the starting point of history. Normally, people
uses the negative infinite (2‘) to represent the far away history.
When making calculations (such as integration, etc.), cutoffs are
usually selected. Without affecting the calculation accuracy, we in
our method choose t 5 0 as the history starting point. It should be
emphasized that we do not ignore the historical information before
t 5 0, but just define that the history starts at t 5 0 (there are no
historical information before t 5 0). In this case, the first issue can be
addressed and the reverse derivation of equation (8) becomes
possible. But for the second issue, the reality is that we do not have
the observation at the beginning of history. In fact, our observations
only started about hundred years ago. Climate states before our
observations will of course have influences on the present state,
although the influences should be very small. In this case, if we
starts our extraction at the beginning of ‘‘observation’’, does our
method still work, or under what conditions the extraction of
historical WSE is accurate enough for our further analysis, is the
key issues need to be solved.

In the following, we will address this issue by analyzing artificially
generated data. We generate two artificial time series by using FISM,
Data I and Data II, see Fig. 1(b) and Fig. 1(c). They are integrated
from the same white noise, {e0}, see Fig. 1(a), but with different
integral order q. The white noise here can be considered as the
weather-scale excitations (WSE), while Data I and Data II can be
considered as the ‘‘observed’’ time series x(t). For Data I, q 5 0.2,
indicates the generated time series is long-term correlated with DFA
exponent a 5 0.7. For Data II, q 5 0.5, indicates the generated time
series is long-term correlated with DFA exponent a 5 1.0. As dis-
cussed above, by deriving equation (2) reversely, we can obtain the
historical WSE from both Data I and Data II, as shown in Fig. 2(a1)
and Fig. 2(b1) (the red curves). By comparing the estimated WSE
with the white noise {e0} (the black curve in Fig. 2), one therefore can
examine whether our estimation of WSE is reliable. In this study, we
suppose the index of 5001 is the beginning time of ‘‘observation’’.
Therefore, we begin our extraction of WSE at index of 5001, and
‘‘have to’’ ignore the values before. We choose a short window (index
from 5001 to 5200) as our experimental subjects. As shown in Fig. 2,
at the beginning of the estimation (index from 5001 to 5025), there
are big errors, while as time goes by, the errors become smaller. The
appearance of errors is understandable, since we start our estimation
at the index of 5001. Historical information before (index before
5001) is ignored in our calculation. That is why big errors arise at
the beginning. However, as time goes by, the influence of the ignored
historical information (index before 5001) will decay considerably,
which thus result in small errors. From Fig. 2, one can see that after
200 points, the relative error of the estimated WSE is only 1.7%
(4.1%) for Data I (Data II). Therefore, we have confidence to believe
that our estimation of historical WSE is reliable, but one has to
sacrifice a certain number of data points at the beginning, to ‘‘wait’’
until the influence of unobserved history become very small, and
make sure the estimation is accurate enough for the following
procedures.

Extraction of climate memory. To the end of this section, we will
show how to extract the so-called climate memory signals by using

FISM. We take two time series as example. One is the Northern
Hemisphere monthly Temperature Anomalies (NHTA, from 1880
to 2011, downloaded from the National Aeronautics and Space
Administration, NASA, http://data.giss.nasa.gov/gistemp/), and the
other is the Pacific Decadal Oscillation index (PDO, from 1900 to
2011, downloaded from the Physical Sciences Division, National
Oceanic and Atmospheric Administration, NOAA), as shown in
Fig. 3. From the Detrended Fluctuation Analysis (here we use the
second order, DFA-2, which can remove the effect of linear trends
and has been widely used in climatic research, see10,31,33), it has been
found that both time series are characterized by long-term memory.
As shown in Fig. 4(a) and Fig. 4(c), the DFA exponent a 5 0.85 6

0.01 for NHTA, while a 5 1.05 6 0.01 for PDO (the black dots). We
can also reach consistent results by using the Power Spectrum
Density Analysis (PSD), as shown in Fig. 4(b) and Fig. 4(d), the
PSD exponent b 5 0.7 6 0.05 for NHTA, while b 5 1.1 6 0.05
for PDO (the black curves). But considering the larger statistical
uncertainties in PSD, we prefer using DFA as the method to detect
the LTM strength. The appearance of LTM in these two time series is
understandable. In fact, it is not new to find LTM in temperature
records. Many previous researches have reported that temperature
records from different regions are characterized by different
LTM33,34. Normally, temperatures over ocean have strong LTM
with a 5 1.035, over coastal area have a little weaker LTM with a 5

0.6536, while over inner continents have the weakest LTM, even near
to white noise with a 5 0.520. Therefore, our DFA result for NHTA (a
5 0.85 6 0.01) looks reasonable since the Northern Hemisphere
comprises both ocean and continent. As for the PDO, since it is
defined as the leading EOF of monthly sea surface temperature
anomalies (SSTA) over the North Pacific (poleward of 20uN)37, its
PDO index (which is the standardized principal component time
series) will of course be modulated by the slow changing effect of
ocean. Therefore, strong LTM as we found (a 5 1.05 6 0.01) in PDO
index is also reasonable.

Since the existence of LTM indicates the states from long-time ago
may still have influences on the present states, how to estimate this
long-lasting influence quantitatively is of great importance for our
better understanding, or even predicting of the time variations of our
considered time series. In the following, we will show our results on
this issue. As discussed above, to estimate the memory signals quan-
titatively, one needs first to extract the historical WSE from the
historical observations. See Fig. 3, we divide the time series into three
periods: ‘‘Historical Info A (1880 , 1919)’’, ‘‘Historical Info B (1920
, 1991)’’, and ‘‘Test Zone (1992 , 2011)’’. By deriving equation (8)
reversely, we can extract the historical WSE, as shown in Fig. 5. But
the extracted WSE in ‘‘Historical Info A’’ will not be considered in
our following procedures, since there might be big errors originated
from the influences of unobserved historical information. As dis-
cussed in the last section, we have to sacrifice the extracted WSE in
the period of ‘‘Historical Info A’’, and only use the WSE in ‘‘Historical
Info B’’ for our following calculation.

It is worth to note that the dividing line between ‘‘Historical Info
A’’ and ‘‘Historical Info B’’ is not arbitrarily determined. We choose it
according to a numerical test. In the numerical test, we first generate
plenty of artificial data by using FISM, as what we did in the previous
section. For NHTA, we choose q 5 0.35, to simulate the LTM in
NHTA; while for PDO, we choose q 5 0.55, to simulate the LTM in
PDO index. By repeating the extraction procedures, we could tell
how big the errors are at different time points. It is found that, if
we choose the dividing line at the year of 1920, the errors of the
extracted historical WSE for both time series will be smaller than
5% (detailed results are not shown). Therefore, we choose to sacrifice
the extracted WSE before the year of 1920, as shown in Fig. 5.

Before we calculate the memory signals, the statistical properties of
the extracted WSE in time period of ‘‘Historical Info B’’ are further
checked by DFA and the power spectrum density analysis. As shown

www.nature.com/scientificreports
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in Fig. 4 (the red dots and curves), it is clear to see that for both cases,
the DFA exponent a 5 0.5 6 0.01 and the PSD exponent b 5 0 6

0.05. The extracted WSE are not characterized by LTM. Therefore,
we are more convinced that our extraction of the historical WSE is
accurate and suitable for our further calculations.

With equation (5), we finally complete the extraction of the mem-
ory signals ‘‘hidden’’ in both the NHTA and the PDO time series. The
period of 1992 , 2011 are chosen as the ‘‘Test Zone’’, to compare the
extracted memory signals M(t) with the observed time series. As
shown in Fig. 6(a) and Fig. 6(c), the memory signals (red curves)

Figure 1 | Fragments of white noise {e0} (a) and two artificially generated data: Data I (b) and Data II (c). Both data are generated from {e0} by using

FISM. For Data I, the integral order is q 5 0.2, while for Data II, the integral order is q 5 0.5. The dashed box shows the short window (index from 5001 to

5200) we choose for the detailed experiment in Fig. 2.

Figure 2 | Examination of the extracted ‘‘historical WSE’’. {e1} is the extracted WSE from Data I, while {e2} is the extracted WSE from Data II. (a1) and

(b1) show the comparisons between the white noise {e0} and the extracted WSE from both Data I and Data II. At the beginning (index 5 5001), there are

big errors, as shown in (a2) and (b2). But as time goes by, the errors become much smaller. At the index of 5200, the relative error of the extracted WSE is

only 1.7% and 4.1%, for Data I and Data II respectively.

www.nature.com/scientificreports
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account for a large proportion in the whole variations (black curves)
for both time series. The stronger LTM is, the lager proportion will be
found (the case of PDO). Of course, we like to admit that, the large
proportion of climate memory found here is due to the strong LTM
properties in these two time series. If the considered time series are
characterized by very weak LTM, the proportion of the memory
signals will be much smaller, and the whole variations will be mainly
determined by the weather-scale excitations. For white noise (with-
out LTM, q 5 0, a 5 0.5), the memory signals calculated will be zero
(figures are not shown here).

It is worth to note that the climate memory signals extracted in our
study are not only integrated from the historical WSE of 1920 ,
1991. For each time point t, we first update the historical WSE till t 2 d
(d is the sampling intervals of the observed time series, in this study,
it equals one month), and then estimate the memory signals accu-
mulated till t. Therefore, our calculation can also be considered as
a one-step-ahead estimation of the climate memory signals.
Furthermore, we also need to note that our method is designed for
anomaly series. Typical periodic signals such as annual cycles are
removed before analysis. Like the time series used in our work,
NHTA is temperature anomalies with annual cycle removed, while
the PDO index is also calculated from the monthly sea surface tem-
perature anomalies (SSTA) over the North Pacific. We do not take
the annual cycle into account because it is a kind of periodic and
relatively steady signals, while our target is to study the internal
stochastic processes in climate system. Therefore, it is better to use
anomaly series for the analysis.

Discussion
In this study, by using the Fractional Integral Statistical Model
(FISM), we extracted the climate memory signals quantitatively.
Essentially, this is a new method, with which one can estimate the
long-lasting influences of historical climate states on the present
time. We would like to emphasize that, the long-term climate mem-
ory we are discussing here is originated from the interactions

between fast-excitation subsystems and slow-response subsystems,
such as the atmosphere-ocean interactions. Different from the short-
term correlations originated from general weather-scale regimes,
long-term climate memory is actually a characterization of scaling
behavior in the whole climate system on time range from monthly to
decadal38,39. Therefore, our method is better to be applied to monthly
(or annual) data, where the effects of (short-term) general weather
regimes have been averaged out. This is also the reason why this
method may be useful for the climate-scale prediction.

From our research, we find the climate memory signals indeed can
explain part of the variations if the considered time series are char-
acterized by LTM. Such as the results shown in Fig. 6, the extracted
climate memory signals account for a large proportion in the whole
variations for both NHTA and PDO index. When simulating near
future climate variations, with the memory signals M(t) only, one can
at least know part of information on the near future variations, as
shown in equation (4). Therefore, for a given time series (or subsys-
tem), M(t) can be considered as the influences accumulated from the
historical information. It is the climate memory, which determines
on what basis the time series will continue to change. While e(t)
stands for the continuous random excitation by short period
weather-scale disturbances. It is a kind of external force, which deter-
mines in what direction the considered time series will change to. As
shown in Fig. 6, besides the memory signals, we also calculated the
corresponding WSE by using equation (4), and show them in
Fig. 6(b) and Fig. 6(d). It is easy to find that for NHTA, which has
a significant increasing trend during the past 20 years (as shown in
Fig. 3), the calculated WSE are more likely to be positive. This indi-
cates that WSE contains the external force, which triggered the
NHTA taking on a warming trend during the past years. Although
affected by the climate LTM, which is closely related with the LFV of
climate, the considered time series may also take on a increasing (or
decreasing) trend at some time scale (valleys and mountains, as dis-
cussed in40). But in our case, the memory signals obviously cannot
explain the dramatically warming trend happened in the past years.

Figure 3 | The two time series we use for our analysis. (a) is the North Hemisphere monthly Temperature Anomalies (NHTA) from 1880 to 2011, while

(b) is the Pacific Decadal Oscillation index (PDO) from 1900 to 2011. The green curves represent the monthly values, while the black curves is the annual

fluctuations. The two time series are divided into three periods: ‘‘Historical Info A (1880 , 1919)’’, ‘‘Historical Info B (1920 , 1991)’’, and ‘‘Test Zone

(1992 , 2011)’’.

www.nature.com/scientificreports
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Therefore, our results also confirm that the warming trends observed
during the past 20 years are more likely to be external-forcing
induced, rather than caused by the natural variability.

In fact, in analogy to a famous traditional autoregressive fraction-
ally integrated moving average (ARFIMA) model41,42, our method
can also be considered as a prediction model. In ARFIMA, the pre-
sent climate states can be estimated according to

x tð Þ~
X?
v~1

a q; vð Þx t{vð Þze tð Þ, ð9Þ

where e(t) denotes an independent and identically distributed (i.i.d)
Gaussian noise, a(q; v) is statistical weights defined by38,

a q; vð Þ: {1ð Þvz1 C 1zqð Þ
C 1zq{vð ÞC 1zvð Þ , ð10Þ

and C(v) denotes the Gamma function. v stands for the distance
between the present time t and the historical time t 2 v (correspond-
ing to the ‘‘t 2 u’’ in equation (2)), while q is a free parameter ranging
from 0 to 0.5 (correspongding to the ‘‘q’’ used in our method). By
calculating the statistical weights a(q; v), along with the historical
observation x(t 2 v), one can make a simple prediction of x(t). While
in our method, the present climate states can be determined by,

x tð Þ~M tð Þze tð Þ~K qð Þdt 6Yt{d
0 ze tð Þ, ð11Þ

where K qð Þdt is the memory kernel, represents the integrating factor
of every single historical time point from u 5 0 to u 5 t 2 d, and is
governed by the LTM strength q. While Yt{d

0 represents the histor-
ical WSE at each historical time point, and can be extracted from the
historical observations x(0), x dð Þ, � � � ,x t{dð Þ. By calculating the
convolution between K qð Þdt and Yt{d

0 , the climate memory signal
M(t) is determined, with which a prediction of x(t) can be made.

These two models seem to behave in a similar way and are both
useful for the simulation of long-term correlated processes.
Therefore, it is essential to make a careful comparison between them.
To start the comparison, we would like to first recall the so-called
fractional Brownian motion (fBm). It is well known that fBm
describes physical processes that the successive increments (frac-
tional Gaussian noise, fGn) are long-term correlated (not like the
case in ordinary Brownian motion, Bm). Considering many natural-
world processes are temporally long-term correlated, fBm is thus
more powerful in understanding this kind of self-similar (or fractal)
processes. From the work by Mandelbrot and Van Ness28, fBm is
derived from Bm by simply using fractional integral techniques. In
other words, fractional integral technique can thus be used math-
ematically to simulate the behaviors of fBm, or more frequently, the
temporal correlations of the corresponding successive increments
(fGn). ARFIMA and FISM are such kind of simulation models.
Since ARFIMA and FISM are both designed from fractional integral

Figure 4 | The DFA and PSD analysis for the two considered time series. (a) and (b) are the results for NHTA, while (c) and (d) are the results for PDO.

The black dots (curves) represent the results of the original time series in Fig. 3, while the red dots (curves) show the results of the extracted WSE in

‘‘Historical Info B (1920 , 1991)’’ (see Fig. 5). It is found that the original time series (NHTA and PDO) are both characterized by strong LTM, with the

DFA (PSD) exponent a 5 0.85 6 0.01 (b 5 0.7 6 0.05) for NHTA and a 5 1.05 6 0.01 (b 5 1.1 6 0.05) for PDO. While for the extracted historical WSE,

as expected, no LTM property is found.
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Figure 5 | The historical WSE extracted from NHTA (a) and PDO (b). The thin black curves represent the monthly values, while the thick black curves is

the annual fluctuations. The historical WSE are only extracted and shown in the first two periods: ‘‘Historical Info A’’ and ‘‘Historical Info B’’. We use the

last 20 years (1992 , 2011) as our test zone.

Figure 6 | The calculated climate memory signals and their corresponding historical WSE. (a) and (c) are the comparisons between the calculated

climate memory signals M(t) (red curves) and the original time series (black curves) in 1992 , 2011. (b) and (d) show the corresponding historical WSE

in the same time period. (a),(b) represent the results of NHTA, while (c),(d) represent the results of PDO. One can see the memory signals M(t) account

for a large proportion in the whole variations for both time series, which indicates the extraction of M(t) is helpful for our further climate prediction.

Interestingly, the historical WSE for NHTA are asymmetrically distributed with more positive values, as shown in (b), which means the warming trends

observed during the past 20 years are more likely to be external-forcing induced, rather than caused by the natural variability.
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techniques, it is therefore not surprising that they have similar math-
ematical form and usage. But from equation (9) and equation (11), it
should be noted that there still are significant differences, which
mainly arise from the way of how the fractional integral is performed.
To explain it more clearly, two key variables, the statistical weight
a(q; v) in equation (9) and the memory kernel K qð Þdt in equation (11)
are considered. Suppose we have one long-term correlated time ser-
ies (fGn) with DFA exponent a 5 0.7 (corresponding to the integral
order q 5 0.2). If we use ARFIMA to simulate this time series, the
calculated statistical weight a(q; v) is shown in Fig. 7 (the red curve),
while if we use FISM to simulate this time series, the calculated
memory kernel K qð Þdt is the black curve in Fig. 7. Obviously, both
two variables decay along power function, which indicate long-term
memory. But from the different decay rates, we believe there are
fundamental differences between FISM and ARFIMA. From equa-
tion (9) and equation (11), one can easily find the statistical weight
a(q; v) in ARFIMA and the memory kernel K qð Þdt in FISM actually
act on different variables. a(q; v) acts on the historical observations
x(t 2 v) directly, while K qð Þdt acts on the historical WSE. We believe
it is this difference that makes our method in this study seems to be
superior, because we can easily decompose a present state x(t) into
two components: the cumulative historical memory part, and the
present weather-scale excitations, and further give the variables in
equation (11) physical meanings. Such as e(t), unlike equation (9), it
not only denotes an independent and identically distributed (i.i.d)
noise, but also represents the present WSE. Therefore, we believe our
method is more than a fractionally integrated prediction model.
Besides simulating long-term memory properties, it also tries to
understand physical processes from an angle of why and how the
long-term memory arise in climate. Therefore, a new perspective on
climate prediction can be addressed. For example, one may improve
our prediction skills by mainly focus on the weather-scale excita-
tions. Combine with the cumulative climate memory signals, a reas-
onable prediction may be finally obtained.

However, it is worth to note that the proportion M(t) accounts for
is determined by the strength of LTM. In our research, the two cases
are both characterized by strong LTM. Therefore, the extracted M(t)
accounts for a large proportion in the whole variations. But the reality
is, not all the observed climate variables are characterized by strong

LTM. Some of them may only weakly related with the slow respond-
ing subsystems (such as the ocean), and therefore characterized by
relatively weaker LTM. As a result, the whole variations may be
mainly determined by WSE, which cannot be extracted statistically
in our method. To improve the prediction in this case, we may need
to build bridges between the considered variable with weak LTM and
other variables with strong LTM. By making reliable predictions of
‘‘other variables’’, the prediction of the considered variable may be
improved with the help of their links. However, to address this issue,
detailed experiments are still needed.

In summary, this report shows a new method with which one can
extract the climate memory signals quantitatively. We believe the
results will provide us a new perspective on climate prediction, but
many more detailed studies are still needed. In addition, it should be
noted that not only the climatic time series are characterized by long-
term memory. LTM is ubiquitous in nature, such as in economic
records43, physiological records44, and even records of human activ-
ity45,46. Therefore, our method may even have broader application
prospects. In a following paper, we will discuss it more thoroughly
and show more results.

Methods
In this section, we will summarize the procedures on how to extract the climate
memory signals. As discussed above, we believe any given climatic time series can be
decomposed into two parts: the cumulative climate memory signals M(t) and the
present weather scale excitations e(t), as shown in equation (4). In this study, we
proposed a method, which can be used to extract M(t) by using FISM. But before
applying it to observational records, we need first transfer equation (2) into discrete
form, as equation (8), see also in the following,

x tð Þ~M tð Þze tð Þ

~
1

C qð Þ

ðt{d

u~0

e uð Þ
t{uð Þ1{q duze tð Þ

~K qð Þdt 6Yt{d
0 ze tð Þ

ð12Þ

where K qð Þdt : k q; tð Þ,k q; t{dð Þ, � � � ,k q; t{uð Þ, � � � ,k q; dð Þf g, represents the
integrating factor (we name it as Memory Kernel, MK for short, see29) of every single
step, and Yt{d

0 : e 0ð Þ,e dð Þ, � � � ,e uð Þ, � � � ,e t{dð Þf g, represents the WSE at each

historical time point. The superscript and subscript of K qð Þdt denote all the time
distances between historical time points and the present time, like t 2 u in equation
(2), from t 2 u 5 t (corresponding to u 5 0) to t 2 u 5 d (corresponding to u 5

t 2 d), while the superscript and subscript of Yt{d
0 denote the historical time point,

like u in equation (2), from u 5 0 to u 5 t 2 d. Obviously, to extract M(t), one needs

first determine both K qð Þdt andYt{d
0 , and then calculate their convolution. For K qð Þdt ,

with the strength of LTM (or the integral-order q), we can calculate it directly, while as
for Yt{d

0 , it is extracted by deriving equation (12)(or equation (8)) reversely. Details
of all the procedures are summarized as following. Suppose we have a climatic time
series {x(t)}, to extract the climate memory signals at the present time t, one needs:

i) Determine the strength of LTM by DFA, obtain the DFA exponent a and
further the integral-order q, according to equation (3).

ii) Calculate the memory kernel at each time distances according to its definition:
K qð Þdt : k q; tð Þ,k q; t{dð Þ, � � � ,k q; t{uð Þ, � � � ,k q; dð Þf g, where k q; t{uð Þ~

1

C qð Þ t{uð Þ1{q .

iii) Using the calculated MK and the observed historical records x 0ð Þ,x dð Þ,
� � � ,x t{dð Þ, reversely derive equation (12) and extract the historical WSE

e 0ð Þ,e dð Þ, � � � ,e t{dð Þ step by step. For example, suppose t9 5 0 is the begin-

ning of our observation, ignore the influences before this time point, theoret-

ically we have

e 0ð Þ~x 0ð Þ: ð13Þ

For the next time point t9 5 d, since u 5 0 is the corresponding historical time

point, from equation (12), e(d) will be calculated as

e dð Þ~x dð Þ{K qð Þdd6Y0
0

~x dð Þ{k q; dð Þ|e 0ð Þ:
ð14Þ

While for the third time point t9 5 2d, similarly, u 5 0 and u 5 d become the

corresponding historical time points, e(2d) will thus be determined as

Figure 7 | Difference between the memory kernel K(q; t 2 u) (in our
method) and the statistical weights a(q; v) (in ARFIMA). We show the

case when q 5 0.2. We can see power-law behaviors for both K(q; t 2 u)

(black) and a(q; v) (red), that is, as the distance between the present time

and historical time increases, neither the memory kernel nor the statistical

weights will reach zero. The memory kernel decreases slower than the

statistical weights.
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e 2dð Þ~x 2dð Þ{K qð Þd2d6Yd
0

~x 2dð Þ{ k q; 2dð Þ|e 0ð Þzk q; dð Þ|e dð Þð Þ:
ð15Þ

In this way, for time point t9 5 t 2 d, e(t 2 d) can be derived as

e t{dð Þ~x t{dð Þ{K qð Þdt{d6Yt{2d
0

~x t{dð Þ{ k q; t{dð Þ|e 0ð Þzk q; t{2dð Þ|e dð Þz � � �zk q; dð Þ|e t{2dð Þð Þ,
ð16Þ

and the historical WSE e 0ð Þ,e dð Þ, � � � ,e t{dð Þ will finally be obtained.
However, it should be noted that we must sacrifice a certain number of the
extracted historical WSEs until the influences of unobserved historical
information (before u 5 0) become negligible, as discussed in Fig. 2.

. In the end, with the extracted historical WSE and corresponding memory
kernel, the cumulative climate memory signals M(t) can be calculated by
using equation (5).

About this method, we would like to note that the most important procedure is to
calculate the memory kernel K qð Þdt . It not only related with the calculation of his-
torical WSE, but also used in the extraction of climate memory signals. Therefore, to
make a reliable extraction of M(t), we need to ensure the accuracy of K qð Þdt . Since

K qð Þdt is determined by the integral-order q, or more precisely, by the strength of
LTM, accurate diagnosis of LTM property is very essential. In other words, it is the
LTM-estimation errors that determines the errors of our extraction of the climate
memory signals. Actually, this is a problem not only faced by our method, but also
faced by other models, like the ARFIMA, where one also need to make a estimation of
the integral-order q41, see equation (10). In this study, comparing with the power
spectrum density (PSD) analysis, we find DFA may be a more reliable method in
estimating the LTM strength, since the estimated DFA exponents a have small
standard errors (60.01). However, we still suggest a further examination, such as
applying DFA to the extracted WSE (as shown in Fig. 4) to make sure the accuracy of
the calculation. Moreover, applying multi-methods together to improve the accuracy
of estimated LTM strength may also be a good solution.
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