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How the nonstationarity in the atmosphere turbulent vertical velocity series affects its organization degree of
multiscale structures is quantified by permutation entropy (PE) and complexity-entropy causality plane (CECP),
and marked PE and CECP differences are detected between the nonstationary and stationary series. We find
that the value of PE is lower in the nonstationary vertical velocity series than the stationary counterparts. Both
types of series locate near the region of the higher complexity value in the CECP as chaotic systems, but the PE
is smaller and the complexity degree is larger in the nonstationary series than the stationary with smaller time
delays. Due to the close relationship between PE and the multiscale Shannon entropy, we show that the PE and
CECP can be also taken as an indicator to quantify the different organization degrees of the multiscale structures
existing between the stationary and nonstationary surface vertical velocity records.
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I. INTRODUCTION

Nonstationarity is a common feature in geophysical flows,
and flow in the atmospheric boundary layer is inherently non-
stationary. Turbulence time series collected in the atmospheric
surface layer over land may often be nonstationary. It has been
found that a stationarity test shows that about 40% of the
turbulent heat fluxes at Summit, Greenland are classified as
nonstationary [1]. Mahrt et al. [2] examined the relationship of
turbulence to the nonstationary wind and thermal stratification,
and found that the turbulence is simultaneously generated by
different nonstationary mechanisms. The related concepts of
stationarity and the existence and values of integral time scales
are central to the ability of analyzing micrometeorological
data within the framework of Monin-Obukhov similarity
theory and other classical analyses [3]. Simple and powerful
methods capable of detecting the nonstationarity of a time
series and studying transient dynamics would be valuable to
researchers from diverse fields [4]. Therefore, the qualification
of nonstationarity effect is fundamental to develop suitable
models for simulation and forecasting purposes.

The nonstationarity is closely linked to the coexistence of
eddies of various scales, especially the coherent structures,
in the turbulent flow. In studies of atmospheric turbulence,
“coherent structures” are used to denote the distinct large-scale
fluctuation patterns regularly observed in a given turbulent flow
[5]. It is thought that the turbulent flows are characterized by
three-dimensional chaotic motions often caused by coherent
eddies of different sizes and orientation [6]. It has also
been pointed out that ramp features in the turbulent scalar
field are associated with turbulent coherent structures, which
dominate energy and mass flux in the atmospheric surface
layer. Shapland et al. [7] demonstrated the signature of more
than one ramp scale existing in structure functions of the scalar
turbulence measured from above bare ground and two types
of short plant canopies. The synchro-cascade pattern theory
[8] has proposed that eddies of various sizes coexist and
interweave with each other in each step of the cascade in the
space occupied by the fluid, and their nonlinear interaction
with each other strengthens or weakens their amplitudes,

thereby causing strong fluctuations in amplitude with different
scales. Therefore the degree of organization of complex eddy
motions of various scales is really crucial to the nonstationarity
of fluid turbulence. Gao et al. have detected nonstationarity
and state transitions in a time series using recurrence time
statistics and found that nonstationarity in the metastable
chaotic Lorenz system is due to nonrecurrence [9,10]. In
atmosphere boundary-layer turbulence, it has been found that
the nonstationarity in the vertical velocity often occurs at
nocturnal conditions under relatively clear skies [11], because
the atmosphere boundary-layer turbulence is usually more
developed during the day than the night. Also we have
discovered that the probability density functions and the power
spectra of the original velocity series cannot quantify the
effects of the nonstationarity well [11,12].

Herein we use an approach by using quantifiers derived
from information theory, permutation entropy, and statistical
complexity (i) to investigate the degree of organization of
complex eddy motions of various scales and (ii) to contrast
the nonstationarity effect in the vertical wind velocity (w)
time series collected in the atmospheric surface layer. The
permutation entropy [13] and statistical complexity [14] have
been used to analyze many data efficiently with low sensitivity
to noise [15], by transferring the raw time series into a
corresponding sequence of symbols [16–24]. The advantages
of this method are its simplicity, extremely fast calculation, ro-
bustness, and invariance with respect to nonlinear monotonous
transformations [13].

The rest of the paper is organized as follows. In Sec. II, we
will make a short introduction of the analysis methods and the
data sets used in this paper. Detailed results of permutation
entropy and statistical complexity for the stationary and
nonstationary vertical velocity series are provided in Sec. III.
In Sec. IV, the conclusions are summarized.

II. DATA AND METHODS

A. Data

The vertical velocity records used herein were obtained
from a field experiment performed by the State Key Laboratory
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FIG. 1. Segments of the original stationary and nonstationary
vertical velocity time series, with white noise for reference.

of Atmospheric Boundary-Layer Physics and Atmospheric
Chemistry (LAPC), from 9 to 22 June, 1998. The underlying
surface comprises paddy fields and the observation height is
4 m. The instrument used in the experiment is a SAT-211/3k
three-dimensional ultrasonic anemometer, whose sampling
frequency is 10 Hz and where each 40 000 sampling points
are taken as one record. Typical parts of records can be
found in Fig. 1, where stationary and nonstationary records
show the different features; especially, there are dominant
larger-scale structures in the nonstationary record. More details
of the statistical characteristics of the experimental data have
been shown elsewhere [11,12,25–27] and have not been
repeated here for conciseness and clarity. In order to study
the nonstationarity effect, we select some representative series
from the data sets after the diagnosis of nonstationarity by
means of the space-time index (STI) method [11,12]. The STI
is a graphical method and can effectively detect dynamical
nonstationarity in a time series. Detailed descriptions of the
STI method are presented in Yu et al. [28,29]. We have selected
24 vertical velocity time series, and 12 of them are the most
nonstationary among the data sets, while the other 12 are the
most stationary. We show the ensemble-averaged statistical
analysis results of 12 samples for each group.

B. Methods

1. Shannon entropy and permutation entropy

A nonlinear time series analysis has been used by Wesson
et al. to quantify the organization of atmospheric turbulent
eddy motion [30]. One of these nonlinear dynamic methods
sensitive to distinct measures of organization of a given time
series is Shannon entropy [31], which is defined as

S[Pi] = −
∑

i

Pi log Pi, (1)

Pi(i = 1,2, . . . ,M) is the discrete probability distribution of
the given data, such as vertical wind velocity here. For
further calculations, we will use the normalized Shannon

entropy, Se = S[Pi]/ log(M) where M is bin number. The
value of Se is guaranteed to be between 0 and 1, and this
normalization ensures that entropy differences attributed to
different sampling lengths and duration are minimized [30].
Using this definition of the Shannon entropy provides a
technique to give information about the order or disorder of
the flow. The study by Wesson et al. concluded that the more
intense the organization of the flow, the lower the value of the
Shannon entropy [30].

Because eddies in the atmospheric turbulent motion are
usually multiscaled, the Shannon entropy calculated from the
original records cannot fully quantify their multiscale features
[11], so we have considered the velocity increment

δvτ
t = v(t + τ ) − v(t), (2)

used in structure function analysis with different time lags, τ =
2h (delay time), to quantify the attributions from multiscale
eddies with scale factor h = 0, 1, . . . , 9, 10. We have calcu-
lated the Pi in Eq. (1) as the discrete probability distribution
of the multiscale velocity increment δvτ

t , and called the cor-
responding Se multiscale Shannon entropy. Using multiscale
Shannon entropy, different properties have been quantified
between stationary and nonstationary turbulent vertical wind
velocity increments. We have found that on the same scale
factor the normalized Shannon entropies of stationary wind
increments are all larger than those of nonstationary ones, and
with the scale decreasing the normalized Shannon entropies are
all dropping quickly for both stationary and nonstationary wind
increments. More detailed comparative multiscale Shannon
entropy results for these two types of series are presented in
our previous work [11].

Similar to Shannon entropy, permutation entropy is another
parameter that can quantify the organization degree of a
given time series. The essence of the permutation entropy
proposed by Bandt and Pompe [13] is to associate a symbolic
sequence to the time series under analysis. This is done
by employing a suitable partition based on ordinal patterns
obtained by comparing neighboring values of the original
series. This is justified if the values have a continuous
distribution so that equal values are very rare. Otherwise,
we can numerically break equalities by adding small random
perturbations. Considering a given time series {xt }t=1,2,...N , an
embedding dimension D > 1, and a delay time τ [18], the
ordinal pattern is generated by

(s) = (xs−(D−1)τ ,xs−(D−2)τ , . . . ,xs−τ ,xs), (3)

with s = Dτ,Dτ + 1, . . . ,N . For each of these (N − Dτ + 1)
vectors, we investigate the permutations π = (r0,r1, . . . ,rD−1)
of (0, 1, . . . ,D − 1), defined by

xs−rD−1τ � xs−rD−2τ � · · · � xs−r1τ � xs−r0τ , (4)

and for all D! possible permutations of π , we evaluate the
probability distribution P = {p(π )} given by

p(π ) = #{s|s � N − Dτ + 1; (s) has type π}
N − dτ + 1

, (5)

where the symbol # stands for the number (frequency)
of occurrences of the permutation π . Thus we define the
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normalized permutation entropy by

Hs[P ] = S[p(π )]

log D!
. (6)

Naturally, 0 � Hs[P ] � 1, where the upper bound oc-
curs for a completely random system, i.e., a system for
which all D! possible permutations are equally probable. If
the time series exhibits some kind of ordering dynamics Hs[P ]
will be smaller than 1. The parameter D plays an important role
in the estimation of the permutation probability distribution P ,
since it determines the number of accessible states [24]. In fact,
the choice of D depends on the length N of the time series,
in such a way that the constraint D! � N must be satisfied in
order to obtain reliable statistics. For practical purposes, Bandt
and Pompe [13] recommend D = 3, 4, . . . ,7, and here we
have fixed D = 6. The parameter τ = 2h stands for multiscale
delay time [18,19] with h = 0, 1, . . . ,9,10, which is used to
quantify the multiscale features in the atmospheric turbulent
motions [11]. It physically corresponds to multiples of the
sampling time of the given time series. Consequently, different
time scales are considered by changing the embedding delay
of the symbolic reconstructions [32,33].

2. Complexity-entropy causality plane (CECP)

López-Ruiz et al. [14] have introduced another statistical
complexity measure able to quantify the organization degree
of physical structures present in a time series, which is called
the LMC complexity, named after the three authors. Given
a probability distribution P as calculated in Eq. (5), this
quantifier is defined by the product of the normalized entropy
Hs in Eq. (6) and a suitable metric distance between P and
the uniform distribution Pe = {1/D!}. We can write the LMC
complexity as

Cjs[P ] = Qj [P,Pe]Hs[P ], (7)

where

Qj [P,Pe] = S[(P + Pe)/2] − S[P ]/2 − S[Pe]/2

Qmax
, (8)

and Qmax is the maximum possible value of Qj [P,Pe],
obtained when one of the components of P is equal to 1 and
all the others vanish, i.e.,

Qmax = −1

2

[
D! + 1

D!
log(D! + 1) − 2 log(2D!) + log(D!)

]
.

(9)

The quality Qj, usually known as disequilibrium, will be
different from zero if there are more likely states among the
accessible ones. It is worth noting that the LMC-complexity
measure Cjs is not a trivial function of the entropy because it
depends on two different probability distributions; one is asso-
ciated to the system under analysis, P , and the other is uniform
distribution, Pe [14]. It can quantify the existence of correlated
structures [34], and provide important additional information
that may not be carried only by the permutation entropy [24].
Furthermore, it was shown that for a given Hs value, there
exists a range of possible Cjs values [35]. A general procedure
for obtaining the bounds Cjs min and Cjs max as shown in
the inset graph of Fig. 4 is given by Martin et al. [35,36]

and Rosso et al. [37]. Motivated by the previous discussions,
Rosso et al. [34] proposed to employ a diagram of Cjs versus
Hs for distinguishing stochastic from chaotic behaviors. This
representation space, called the complexity-entropy causality
plane (CECP) [18,20,21,24,34,38,39], herein will be used to
quantify different organization degrees between the stationary
and nonstationary turbulent vertical wind velocity records.

To comprehensively characterize the complexity, a wide
range of scales has to be considered, since the complexity
is different on different scales [40]. It is clear that different
time scales are taken into account by changing the embedding
delays of the symbolic reconstruction [24]. The importance
of selecting an appropriate embedding delay in the estimation
of the permutation quantifiers has been recently confirmed for
different purposes, such as identifying intrinsic time scales
of delayed systems [18,23] and quantifying the degree of
unpredictability of the high-dimensional chaotic fluctuations
of a semiconductor laser subject to optical feedback [20].
By changing the delay times, we have found that multiscale
Shannon entropy can distinguish different multiscale orga-
nization degrees between the stationary and nonstationary
turbulent vertical wind velocity records [11]. Here the results
deserve further investigation by using permutation entropy and
statistical complexity.

III. RESULTS AND DISCUSSIONS

A. Permutation entropy and statistical complexity measure

First of all, we can see the obvious difference between the
stationary and nonstationary turbulent vertical wind velocity
records directly from the observational series; see Fig. 1. There
are more dominant large-scale structures in the nonstationary
than stationary time series; in fact, these large-scale structures
will affect the results for permutation entropy analysis and
statistical complexity measure.

The results of permutation entropy analysis are shown
in Fig. 2. First of all, we can see that on the same scale
factor, the normalized permutation entropies of stationary wind
velocity are all larger than those of nonstationary ones, which
indicates that there are much stronger self-correlations in

FIG. 2. (Color online) The multiscale permutation entropy for
stationary and nonstationary time series, as well as the shuffled time
series and white noise.
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FIG. 3. (Color online) The multiscale LMC-complexity measure
for stationary and nonstationary time series, as well as the shuffled
time series and white noise.

the nonstationary than in the stationary conditions. Secondly,
with the delay scale decreasing, the normalized permutation
entropies are all dropping for both stationary and nonstationary
records. These normalized permutation entropy features are
typical of noise-free chaotic systems in the chaotic regime
reported by Zunino et al. [19]. Thirdly, the scale at which the
instability mode remains the energetic mode in the stationary
wind records is much smaller than in the nonstationary flows,
since the normalized permutation entropy for stationary wind
records will reach its saturation level on the much smaller
scale, such as h = 5, but for nonstationary wind velocity
records, the normalized permutation entropy still does not
arrive at its saturation level even when h = 7. At the same time,
the normalized permutation entropy saturation level for the
nonstationary wind velocity records is a bit lower than that for
the stationary wind velocity records, which may result from the
dominated non-Gaussian behaviors found in the nonstationary
wind velocity records [11].

Similar features can be also found in the statistical
complexity measure results, which have been shown in Fig. 3;
however, the values of the statistical complexity measure on
the same scale factor of stationary wind velocity are all smaller
than that of nonstationary ones, which indicates there are
more deterministic modes in the nonstationary records. The
larger-scale structures in the nonstationary records will delay
their statistical complexity measure to reach the saturation
level, where the statistical complexity measure saturation level
for nonstationary records is higher than that for stationary
records, which may also result from the dominated non-
Gaussian behaviors found in the nonstationary wind velocity
records [11].

B. Complexity-entropy causality plane (CECP)

Previous studies have shown that in the CECP, all the
chaotic systems have LMC complexity located near Cjs max.
This entails that high Cjs values are produced by structures
immersed in chaotic time series [19,34]. It has also been
found that 1/f α correlated stochastic processes with 1 <

α < 3 are characterized by intermediate permutation entropy
and intermediate statistical complexity values [34]. Here
our results are consistent with these previous studies, since

FIG. 4. (Color online) The complexity-entropy causality plane
(CECP) for stationary and nonstationary vertical velocity time series.
The numbers in the figure are scale factor h. The whole bounds Cjs min

and Cjs max are shown in the inset graph.

the turbulent flows are characterized by three-dimensional
chaotic motions often caused by coherent eddies of different
sizes and orientation [6]. So the vertical wind velocity time
series have the higher LMC complexity values close to the
Cjs max, regardless of whether the time series is stationary or
nonstationary; see the inset graph in Fig. 4. For larger delay
times, the original chaotic dynamics is undersampled, any
information about the nonlinear determinism is progressively
lost, and statistical behaviors of the increment series appear to
be much closer to the behaviors of white noise. So the LMC
complexity decreases as the delay time increases. However, the
LMC complexity decreases more slowly for the nonstationary
time series than the stationary counterparts, which is consistent
with the analysis of PE and statistical complexity measure. We
have also investigated a shuffled version of both kinds of series
to verify if the localization of the vertical velocity time series
in the complexity-entropy causality plane is directly related
to the presence of correlations. We have obtained Hs ≈ 1
and Cjs ≈ 0 for both shuffled series as white noise, which
confirms that correlations inherently present in the original
wind velocity records are the main source for the different
locations in this plane.

IV. CONCLUSION AND DISCUSSION

In summary, we have shown that the nonstationarity in
boundary-layer vertical velocity time series can be reliably
characterized by estimating how the PE and LMC complexity
change with the delay time increasing. For the nonstationary
vertical velocity series, the permutation entropy is smaller and
the LMC complexity is larger than that of stationary ones when
the delay scales are smaller. In PE and CECP, the nonstationary
time series reach their saturation level more slowly than the
stationary counterparts as the time lags increase. The location
of these quantifiers in the CECP also allows us to infer a useful
organization degree of the coherent structures in boundary-
layer turbulence dynamics.

Multiscale Shannon entropy has been used to quantify
different organization degrees between stationary and nonsta-
tionary turbulent vertical wind velocity records [11]. What is
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FIG. 5. (Color online) The relationship between permutation en-
tropy and Shannon entropy for stationary and nonstationary vertical
velocity time series. The numbers in the figure are scale factor h.

the relationship between PE and multiscale Shannon entropy?
What is the mechanism resulting in the long-range correlations
in both kinds of series? We can see there is a quite good one-
to-one correspondence between PE and multiscale Shannon
entropy (see Fig. 5), so the long-range correlations in both
kinds of series come from the organization of eddies of
different scales. Though both PE and multiscale Shannon
entropy increase as the scale factor (delay time) increases, there
are two differences between nonstationary and stationary time
series. One difference is that the PE and multiscale Shannon
entropy reach their maximums (information saturation) more
slowly for nonstationary time series than the stationary coun-
terparts. The other difference is that the PE nearly increases
linearly for stationary time series, but increases nonlinearly for
nonstationary time series before saturation. We have obtained
Hs ≈ 1 and Se ≈ 1 for both series if we shuffle them, as shown
by the white noise curve in Fig. 5.

With the same data length, it is well known that the
more regular the signals, the smaller entropies they have.
Signals with more regularity always have smaller entropies

than chaotic and random ones. It is not difficult to understand
that the stationary vertical velocity has larger PE and lower
LMC complexity because the atmosphere boundary-layer
turbulence is usually more developed during the day. However
during the night, lower PE and larger LMC complexity in
nonstationary velocity could be due to the more regular,
nonturbulent component of the velocity. These nonturbulent
motions include wavelike motions and solitary modes, two-
dimensional vortical modes, microfronts, intermittent drainage
flows, and a host of more complex structures [41]. Gao et al.
[42] have argued that the key to distinguishing chaos from
noise is to identify different scale ranges where different types
of motions are manifested. Here we change the delay times to
study different types of motions within certain scale ranges in
vertical velocity traces. For both stationary and nonstationary
traces, the original chaotic dynamics is undersampled with
larger delay times, any information about the nonlinear
determinism is progressively lost, and statistical behaviors
(such as permutation entropy and statistical complexity)
of the increment series appear to be much closer to the
behaviors of white noise; see Figs. 2–5. Therefore the LMC
complexity decreases and the PE increases as the delay time
increases.

Since multiscale Shannon entropy has been a useful tool
to quantify the organization information of the coherent
structures in boundary-layer turbulence dynamics, how the
nonstationarity in the atmospheric turbulent vertical velocity
series affects its organization degree can also be quantified
by PE and CECP. Therefore the permutation entropy and
statistical complexity analysis can be used to quantify the
different levels of eddy organization between the station-
ary turbulent vertical wind records and those nonstationary
ones.
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