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a b s t r a c t

How to quantify the effects of non-stationarity on organization of atmospheric turbulent eddy

motions has drawn less attention in recent literatures. Here Benford’s law (BL), which states

that the first digit (1 through 9) in many datasets follows a monotonically decreasing logarith-

mic distribution, is used to address this issue for the first time. A quantifier called multi-scale

first digit entropy (MFDE) is adopted, which is based on the deviation of BL from the practical

first digit distribution of multi-scaled vertical velocity increments, and marked differences are

detected in stationary and non-stationary series. The MFDE values of stationary records do not

change much with different scales while increase significantly for non-stationary ones as time

scales increase. Due to the close relationship between MFDE and the multi-scale Shannon en-

tropy (MSSE), the above results indicate that the non-stationary series are more organized

than the stationary ones. Especially, the MFDE can also be used to quantify the different orga-

nization degrees of the multi-scaled structures existing in surface vertical velocity records.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

From a statistical point of view, the time series is considered as stationary when its probabilistic structure is unaffected with

a transition in time, and many of the measurements in natural complex geophysical systems are non-stationary when viewed

as a whole [1]. The motions in atmospheric boundary layer (ABL) are inherently non-stationary, and records collected in the

atmospheric surface layer over land may often be non-stationary. This non-stationarity in ABL is mainly due to wavelike motions,

meandering of the wind vector, and numerous unidentified small-scale and meso-scale motions [2,3]. The related concepts of

stationarity and the existence and values of integral time scales are central to the ability of analyzing micrometeorological data

within the framework of Monin–Obukhov similarity theory and other classical analysis [4]. What is more, the efficiency of the

momentum transport systematically increases with increasing non-stationarity [2]. However, issues related to the effects of

non-stationarity are not well studied and only recently more attention has been paid [2–10]. Little is known about how to handle

or even judge non-stationarity, such that progress cannot be made in determining its consequences, without a better way to

characterize it.

The non-stationarity is linked closely to the coexistence of eddies with various scales, especially coherent structures in turbu-

lent flows. In studies of atmospheric turbulence, the coherent structures are described as distinct large-scale fluctuation patterns

regularly observed in a given turbulent flows [11]. Turbulent flows in canopies are dominated by such coherent structures of
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whole canopy scale [12], which might be responsible for up to 75% of the turbulent fluxes in the atmospheric surface layer [13].

Coherent structures have received close attention from turbulence researchers investigating flow dynamics in the atmospheric

boundary layer over the past few decades [11,14–21]. Atmospheric turbulence possesses temporal and spatial scales that range

over many orders of magnitude, and the large-scale turbulence (such as coherent structures) is known to have drastic impact on

the statistical parameters of the small-scale turbulence [22]. So the degree of organization of complex eddy motions of various

scales is really crucial to the non-stationarity of fluid turbulence. Several strategies have been used to quantify the different orga-

nization degrees of various-scaled eddy motions [6,10,23]. Wesson et al. [23] used three nonlinear methods including a modified

Shannon entropy, wavelet thresholding, and mutual information content to contrast the organization level in the vertical wind

velocity time series. They found that motions of various-scaled eddy are more organized within the canopy sub-layer than those

in the atmospheric surface layer, and the level of organization increases as the flows in both layers evolve from near-neutral to

near-convective conditions. What is more, multi-scale Shannon entropy (MSSE) [6], permutation entropy and statistical com-

plexity [10] have been used to quantify the different organization degrees between stationary and non-stationary vertical wind

velocity time series.

However, all above methods are based on the statistics on the probability density distribution of the amplitudes [6,23] or the

ordinal patterns [10] in time series, never has the digital information in time series been used to characterize their differences.

We should note that digital information is of great importance to characterize specific process. For example, the first digits in

many datasets are not uniformly distributed as expected, but heavily right skewed toward the smaller digits. This phenomenon

was firstly found by Newcomb in 1881 [24]. Nobody showed interests in this discovery, until Benford [25] investigated some

20 tables of 20,229 numbers and drawn conclusion that the first digit in many data sets follows a monotonically decreasing

logarithmic distribution:

Qd = log10[(d + 1)/d] (1)

where d = 1, 2…9 is the first digit. It was named Benford’s law (BL) later by the scientific community. Many scientists in different

fields have tried to explain the underlying reason of BL [26–30], but a successful explanation has remained elusive [31,32].

In recent years, most applications of BL are limited to detecting whether particular datasets follow this law [33,34], detecting

frauds in election and accounting [35,36], testing physical system transition [37,38]. Only recently, Li and Fu [39] used BL to

develop a novel strategy to distinguish stochastic processes and chaotic systems, and found that BL can be applied to detect

different dynamics hidden in measurements.

However, all the considered stochastic processes and chaotic systems in the reported work [39] are from idealized models,

since the atmospheric turbulent flows are characterized by three-dimensional chaotic motions with different scales and orien-

tations [40], whether this strategy is applicable in boundary layer turbulence? And if so, whether non-stationarity affects the

organization degrees of complex eddy motions deserves further research. Herein a new quantifier called MFDE, which based

on the deviation of the practical first digit distribution of multi-scale velocity increments from BL, is adopted to handle these

problems.

The rest of the paper is organized as follows. In Section 2, a short introduction of the data sets and the analysis methods

are given. Detailed results and discussions for stationary and non-stationary vertical wind velocity are shown in Section 2. In

Section 4, the conclusions are summarized.

2. Data and methodology

2.1. Data

The vertical velocity records used herein were obtained from a field experiment performed by the State Key Laboratory

of Atmospheric Boundary-Layer Physics and Atmospheric Chemistry (LAPC), from 9 to 22 June, 1998. The underlying surface

comprises paddy fields and the observation height is 4 m. The instrument used in the experiment is a SAT-211/3k 3-D ultrasonic

anemometer, whose sampling frequency is 10 Hz and where each 40,000 sampling points are taken as one record. Typical parts

of records can be found in Fig. 1, where stationary and non-stationary records show different features, especially there are

dominant larger scale structures in the non-stationary record. More details of the statistical characteristics of the experimental

data have been shown elsewhere [5,6,10], and not repeated here for conciseness and clarity. In order to study the non-stationarity

effect, some representative series are selected from the datasets after the diagnosis of non-stationarity by means of the space

time-index (STI) method [5,6]. The STI is a graphical method and can detect dynamical non-stationarity in a time series. Detailed

descriptions of the STI method are presented by Yu et al. [41,42]. A total of 24 vertical velocity time series are selected, and 12 of

them are the most non-stationary among the datasets (see NON 1–12 in Table 1), while the other 12 are the most stationary (see

STA 1–12 in Table 1). The ensemble-averaged statistical results of 12 samples are shown for each group.

In Table 1, the time when the 24 samples are collected, the mean values of longitudinal wind velocity ū, the variance of w, σ 2
w,

the mean atmospheric temperature T̄ are listed. Typical values of other meteorological variables are calculated and also listed.

These variables include the friction velocity,

u∗ =
[

u′w′2 + v′w′2
]1/4

, (2)
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Fig. 1. The normalized segments of (a) stationary vertical velocity time series and its large-scale fluctuations (in red line); (b) non-stationary vertical velocity

time series and its large-scale fluctuations (in red line); (c) the stationary series after PRS; (d) the non-stationary series after PRS; (e) the remaining small-scale

series from stationary case; and (f) the remaining small-scale series from non-stationary case. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Table 1

The statistical characteristics of the field experiment data for the selected 24 samples: the STA 1–12

represent for the 12 stationary series and the NON 1–12 stand for the 12 non-stationary ones.

Sample Time zm/L ū (m/s) u∗ (m/s) σ 2
w (m2/s2) H (W/m2) T̄ (°C)

STA1 06-11,02:00 0.126 2.499 0.180 0.073 −18.029 23.681

STA2 06-11,05:00 0.042 3.088 0.178 0.103 −5.794 23.880

STA3 06-11,06:00 −0.045 3.189 0.222 0.099 12.047 24.231

STA4 06-11,07:00 −0.195 3.775 0.335 0.184 182.840 26.993

STA5 06-11,10:00 −2.073 8.292 0.155 0.185 193.210 29.870

STA6 06-11,13:00 −0.043 6.752 0.228 0.087 12.845 30.853

STA7 06-11,17:00 0.175 2.062 0.131 0.043 −9.845 28.926

STA8 06-11,20:00 −0.215 2.331 0.160 0.068 22.018 26.238

STA9 06-12 11:00 −0.025 −1.520 0.345 0.364 25.302 24.654

STA10 06-12 17:00 0.072 2.135 0.177 0.059 −9.922 24.499

STA11 06-15,03:00 −0.095 2.916 0.214 0.089 23.193 28.630

STA12 06-16,08:00 0.126 2.499 0.180 0.073 −18.029 23.681

NON1 06-09,22:00 1.639 0.740 0.032 0.006 −1.325 24.381

NON2 06-09,23:00 2.501 0.477 0.022 0.002 −0.623 23.832

NON3 06-10,01:00 0.537 −0.043 0.031 0.006 −0.405 23.355

NON4 06-10,04:00 3.437 0.169 0.018 0.002 −0.509 22.683

NON5 06-10,05:00 10.572 0.055 0.015 0.001 −0.823 22.630

NON6 06-10,07:00 −1.888 0.403 0.033 0.005 1.619 23.214

NON7 06-10,22:00 2.942 0.688 0.029 0.003 −1.813 24.866

NON8 06-13,23:00 2.366 −0.328 0.014 0.001 −0.147 22.485

NON9 06-14,02:00 −3.518 0.255 0.005 0.001 0.011 21.776

NON10 06-14,03:00 25.987 −0.075 0.010 0.002 −0.617 21.627

NON11 06-14,04:00 0.444 0.089 0.025 0.002 −0.162 21.151

NON12 06-15,20:00 14.786 −0.046 0.010 0.004 −0.362 30.178
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the Obukhov length,

L = − u3
∗ T̄

κgw′T ′ , (3)

and the sensible heat flux,

H = ρCρw′T ′, (4)

where x̄ and x′ symbolize the time averaging and the deviation from the mean of a measured variable x, u and v are the longi-

tudinal and transversal wind velocities, respectively, T is atmospheric temperature, κ(=0.4) is the von Karman constant, g is the

acceleration due to gravity, ρ is the density of air, and Cρ is the specific heat capacity of air. Atmospheric stability is denoted by

ξ = z/L, and usually −0.02 < ξ < 0.02 means neutral stratification, −0.02 ≤ ξ unstable stratification and ξ ≥ 0.02 stable

stratification. Since the boundary layer turbulence is more fully developed under unstable conditions than stable conditions,

most of the 12 stationary series are selected under the unstable stratification, while most of the 12 non-stationary series under

stable stratification, as shown in Table 1.

2.2. Methodology

2.2.1. First digit distribution and significance test

For a given time series with data length N, Pd is defined as the observed frequency of digit d. To evaluate the degree of agree-

ment between Pd and Qd (in Eq. (1)), the Null Hypothesis H0 is provided as that the observed distribution of the first significant

digit in each of the case considered is same as expected on the basis of Benford’s law. To test the null hypothesis the Pearson’s

χ2 test is carried out as follows:

χ2(λ − 1) =
9∑

d=1

(NPd − NQd)

NQd

(5)

In our case λ = 9 which means λ − 1 = 8 degrees of freedom. Under the 95% confidence level, the value of χ2 is χ2(8) =
15.51, which is the critical value for acceptance or rejection of H0. If the value of the calculated χ2 is less than the critical value

then the null hypothesis is accepted and concludes that the data fits Benford’s law [43,44].

2.2.2. MFDE calculation for stationary and non-stationary series

For the chosen stationary and non-stationary vertical velocity time series, the corresponding multi-scale increment series is

created as follows:

�w = w′(i + n) − w′(i) (6)

where n = 2h represents multi-scale time lags with h = 0, 1, 2, . . . , 10.

According to the definition of Shannon entropy: S = −P ∗ log(P), MFDE is defined and calculated as follows:

MFDE(h) =
∑9

d=1 Ph
d

∗ log
(
Ph

d

)
∑9

d=1 Qd ∗ log(Qd)
(7)

where Qd follows Benford’s law in Eq. (1) and Ph
d

is the actual first digit distribution for the given multi-scale increment series

with scale factor h in Eq. (6). According to Eq. (7), the value of MFDE is 1 for Benford’s law distributed time series. Higher MFDE

values indicate that the first digit distribution in time series tends to be uniform, so the maximum value of MFDE is 1.102 (see

Fig. 3) for uniform distributed time series with Ph
d

= 1/9, d = 1, 2, 3, . . . , 9. The minimum value of MFDE is 0 when time series

has only one specific digit.

2.2.3. Phase-randomized surrogate (PRS) and empirical mode decomposition (EMD)

In order to confirm the effect of non-stationarity in velocity series on the first digit distribution, the phase-randomized sur-

rogate method (PRS) is performed on the original series [45]. After PRS, both the long-range power-law autocorrelations and the

long-range cross-correlation function vanish [46]. PRS involves the following steps: (1) perform Fourier transforms on a veloc-

ity fluctuation time series, preserving the amplitudes of the Fourier transform but randomizing the Fourier phases. (2) Perform

an inverse Fourier transform to create a surrogate series. This procedure eliminates nonlinear correlations, preserving only the

linear features (i.e. two-point correlations) of the original time series [47]. Here PRS is used in both two types of vertical wind

velocity series, see Fig. 1c and d.

The empirical mode decomposition (EMD) method is a recent method for analyzing nonlinear and non-stationary processes

[48]. The purpose of EMD is used to reduce a complicated data set into a finite and generally small number of intrinsic mode

functions (IMFs). It identifies different oscillatory modes in the data based upon their time scales and separates the data into

IMFs. Further descriptions of this method are presented in references [49, 50] and are not repeated here. Here EMD is utilized to

extract large-scale fluctuations (red line in Fig. 1a and b) in vertical wind velocity series, and to obtain the remaining small-scale

fluctuations (Fig. 1e and f). For the non-stationarity series, though the first-order non-stationarity (mean value varies with time)

is eliminated after extracting large-scale fluctuations, the second-order non-stationarity (variance changes with time) still exists

in the small-scale fluctuations [5], as shown in Fig. 1f.
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Fig. 2. The first digit distributions of multi-scaled vertical wind velocity increments for: (a) the original stationary time series; (b) the original non-stationary

time series; (c) the stationary time series after PRS; (d) the non-stationary time series after PRS; (e) the remaining small-scale series from stationary case; and

(f) the remaining small-scale series from non-stationary case.
3. Results and discussions

3.1. First digit distributions of multi-scale increment series

The results of the first digit distribution are shown in Fig. 2. First of all, for the increment series with scale factor h = 0, marked

differences can be seen between the stationary and non-stationary ones as shown in Fig. 2a and b. The frequency of first digit 1 is

about 50% in non-stationary series, far deviating from that of BL distribution (χ2 = 1225 � 15.51), while in stationary series this
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frequency is about 33%, and the deviation from BL distribution is smaller (χ2 = 23.2 > 15.51). Secondly, with the scale factor

increases, the frequency of the first digit 1 drops for both two types of time series, but it declines larger for the non-stationary one.

Especially, the first digits conform to BL distribution (χ2 = 13.7 < 15.51) for non-stationary time series with scale factor h = 10.

It has been demonstrated that the first digit distribution from deterministic chaotic systems deviates from BL with different

scales while it does not for the stochastic processes [39]. It is not difficult to understand why the first digit distribution from

stationary series changes little with scales, since the atmospheric turbulence is usually fully developed during the day and then

some features of the stationary records are more like those from stochastic processes. While some features of the non-stationary

series are more like those from the chaotic system, since during the night there are many deterministic components, such as

wavelike motions and solitary modes, two-dimensional vortex modes, micro-fronts, intermittent drainage flows, and a host of

more complex structures [51].

What is more, since PRS can destroy nonlinear correlations hidden in time series, compared with Fig. 2a and b, Fig. 2c and

d show that the PRS procedure affect the results of non-stationary time series more significantly than these of stationary ones.

This is consistent with the conclusion that nonlinearity is more notable in non-stationary vertical wind velocity [52]. Lastly, after

extracting the large-scale fluctuations through EMD method in both time series, the variations of the first digit distribution with

scales become similar for both stationary and non-stationary time series, as shown in Fig. 2e and f. The results indicate that the

large-scale modulation is the main factor leading to the different first digit distributions of multi-scaled increments between

stationary and non-stationary time series. This is consistent with the results between chaotic systems and stochastic processes

in previous work [39].

3.2. MFDE quantifier of non-stationarity effects

To further quantify the differences, the results of MFDE are displayed in Fig. 3. First of all, compared with the non-stationary

records, the stationary series has larger MFDE values on the same scale factor; this indicates that the first digit distribu-

tion of the velocity increment series is less deviated from BL distribution for stationary time series than for non-stationary

ones.

Secondly, with the scale decreasing, the MFDE value increases significantly for non-stationary series while it does not change

much for stationary ones. This is because the stationary time series can be regard as stochastic process with less deterministic

multi-scale structures, while for non-stationary ones there are more large-scale coherent structures.

Thirdly, the MFDE results for phase-randomized shuffled series are also shown in the Fig. 3. After PRS, the MFDE value for

stationary series changes a little, while the MFDE value increases sharply for the non-stationary ones. That is to say, PRS destroy

the nonlinear correlations in non-stationary time series [47], but the differences in MFDE between these two types of series still

exist. Nonlinear correlation is but not the only factor that affects the first digit distribution of velocity increments over different

scales.

Fourthly, after being totally shuffled, MFDE for both types of series reaches the saturation level and does not change with scale

varying. The results are consistent with that higher entropy values may be obtained using randomizing techniques to increase

the mixing and destroying correlated structures [53].

Lastly, the MFDE for non-stationary small-scale fluctuations is similar with those of the stationary series, indicating that

large-scale structure modulation is the main factor leading to the first digit distribution differences, as shown in Fig. 2e and f.
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3.3. Relationship between MFDE and MSSE

In previous research [6], MSSE has been used to quantify different organization degrees between stationary and non-

stationary vertical wind velocity records. What is the relationship between MFDE and MSSE? Whether the MFDE can be taken

as another indicator to quantify the different organization degrees of the multi-scale structures existing in the stationary and

non-stationary surface vertical velocity records? The answers are shown in Fig. 4. Though both MFDE and MSSE increase as the

scale factor increases, there are also marked differences between non-stationary and stationary time series: (i) both MFDE and

MSSE are larger for the stationary series than the non-stationary at the same scale. (ii) MFDE changes with MSSE nearly lin-

early (with slope = 1) over whole ranges for non-stationary time series, especially at smaller scales (h < 3) and only at larger

scales (h ≥ 3) there is a little deviation from this linear behavior. While for stationary cases, there are predominated different

behaviors, the MFDE varies less with MSSE at smaller scales (h < 3), and varies linearly with MSSE at larger scales (h ≥ 3) with

a different slope, which is much smaller than 1. (iii) MFDE and MSSE reach their maxima (information saturation) more slowly

for non-stationary time series than the stationary counterparts. (iv) MFDE ≈ 1 and MSSE ≈ 1 are obtained for both series after

being shuffled, as shown in Fig. 4. In a word, there is a quite good one-to-one correspondence between MFDE and MSSE for both

stationary and non-stationary cases, although their features are different. Since multi-scale Shannon entropy has been a useful

tool to quantify the organization information of the coherent structures in boundary-layer turbulence dynamics [6], the results

indicate how the non-stationarity in the atmospheric turbulent vertical velocity series affects its organization degree can also be

quantified by MFDE.

4. Discussion and conclusion

Though a successful explanation has remained elusive for Benford’s law [31,32], this work helps to throw a new light on

its applications. The different MFDE results for stationary and non-stationary vertical velocity series are consistent with the

conclusion that deviations of the first digit distribution from BL vary with different scales in deterministic chaotic systems while

not in the stochastic processes [39]. Herein we extend this conclusion from idealized models to practical atmospheric turbulent

flows, and exploit that variation of the first digit distribution of velocity increment with scales can be taken to quantify the

non-stationarity effects on organization of eddy motions in atmosphere boundary layer.

In atmosphere boundary layer, the stationary and non-stationary series result from different formation mechanisms [5,6,10],

and it has been found the non-stationarity often occurs at nocturnal conditions under relatively clear skies [23], because the

atmospheric turbulence is usually more fully developed during the day than the night. Turbulence in the very stable regime

might be generated primarily by wave-like motions and other small sub-meso motions on time scales of minutes or tens of min-

utes [40,54] such that equilibrium between the turbulence and deterministic flow is not established [3]. These un-established

equilibrium motions cause the interaction between motions of very large scales and small scales [5], and they lead to non-

stationarity in the scale regimes analyzed here. Better understanding and quantifying non-stationarity is crucial to explore at-

mosphere boundary-layer at very stable conditions, especially through time series analysis methods [2,5,6,9,10,52].

It should be mentioned that time series collected in atmosphere boundary-layer can infer plenty of information through

different aspects (such as amplitude, phase, the first digit etc.). For example, the amplitude information has been used to quantify

different organization degrees by MSSE [6] and the ordinal patterns have used to derive the permutation entropy to quantify

the non-stationarity effects [10]. Herein, taking advantage of Benford’s law, the first digit in time series can also be applied to

quantify non-stationarity effects on organization of atmospheric turbulent eddy motions. From the above analysis, it can be
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concluded that quantifiers from the fluctuation amplitude, the ordinal patterns and the first digits will reach similar conclusions

in some cases [6,10], but they can also present quantitative and qualitative differences in other cases, such as the relation between

MFDE and MSSE for stationary vertical velocity increments over the smaller scales (h < 3) in Fig. 4. In order to reach complete

understanding of the analyzed process, information from different aspects of the recorded series should be incorporated to derive

the full features of the analyzed process.

In summary, the effects of non-stationarity in boundary-layer vertical velocity time series can be reliably quantified by es-

timating how MFDE changes with the increasing scale factor. It can be concluded that nonlinear correlations and large-scaled

structure modulation are main causes of low MFDE values at smaller scales in non-stationary time series. The main advantage

of this technique is that it only depends on the first significant digit of an observable. This advantage over the reported non-

stationarity analysis [6–10] is very important from the point of view of practical applications, in which accuracy is not very high

and uncertainty is unavoidable.

Acknowledgments

The authors acknowledge the supports from the National Natural Science Foundation of China (No. 40975027).

References

[1] Bendat JS, Piersol AG. Random data: analysis and measurement procedures. New York: John Wiley & Sons; 2000.
[2] Mahrt L. Boundary-Layer Meteorol 2007;125:245.

[3] Mahrt L. Boundary-Layer Meteorol 2011;140:343.
[4] Dias N, Chamecki M, Kan A, Okawa CP. Boundary-Layer Meteorol 2004;110:165.

[5] Li QL, Fu ZT. Boundary-Layer Meteorol 2013;149:219.
[6] Fu ZT, Li QL, Yuan NM, Yao ZH. Commun Nonlinear Sci Numer Simul 2014;19:83.

[7] Beck TW, Housh TJ, Weir JP, Cramer JT, Vardaxis V, Johnson GO, Coburn JW, Malek MH, Mielke M. J Neurosci Methods 2006;156:242.
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