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Abstract: Jacobi dliptic function expansion method is extended to construct the exact
solutions to another kind of KdV equations, which have variable codficients or forcing
terms. And new periodic solutions obtained by this method can be reduced to the soliton
typed sol utions under the limited condition.
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I ntroduction

The variable-coefficient KdV equation
U +0 (t) uu +B (1) Uex = 0 (1)
was originally proposed in Ref. [1] , where® (t) andf3 (t) are arbitrary analytic functions. And it
is also rewritten as the general variable coefficient Kdv equationt®
u + B () u+[o(t) +B (1) x]ux - 3¢ (1) uu +Y (1) Uy = 0 @)
which can be reduced to other more physical forms, for example, the cylinder KdV equati ont®!

reads

ut+2—ltu+6uux+ Uox = 0 (3

which has been widely applied in plasma physics and other specific physics.
Many methods have been proposed to solve constantcoefficient nonlinear equations and
much more exact solitary wave solutions or periodic sol utions were obtai ned® 1. But we know

that the constant coefficients are just highly idealized assumptions, which care only some degree
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about realistic physical importance. So more attention!® %! has been paid to studying the
integrability and symmetry of variable coefficient nonlinear equations , since numerous gpplication
in physical sciences and engineering deal with variable coefficient nonlinear equations. Actualy ,
variable-coefficient nonlinear equations are seldom considered for their complexity. In this paper ,
we will extend the Jacobi elliptic function expansion method™®! and apply it to get the periodic
solutions and corresponding shock or solitary wave sol utions to variable coefficient or forced Kdv
equations.

1 Extended Jacobi Elliptic Function Expansion

Considering the general variable coefficient nonlinear equation

N(uvul!uX!utl!uXX! ) =0- (4)
We seek its genera travelling wave solution
u=u€),& =f(t)x+ g(1), (5)

where f (t) and g(t) are undetermined functions of t. Assuming that u() has the following
ansatz solution :

u€) = >a(hsn (6)

we can select nto balance the derivative term of the highest order and nonlinear termin (4) , then
we have the final determined expansion form.
When m -1, sf, —tanlf, ,so (6) degenerates to

n

u€) = Da(t)tanhk . (7)

i=0
Notice that
cn® =1- sn% (8)
and when m -1, crf - sech, ,sowe get cnoidal wave solution and its corresponding solitary
wave solution.
In the following sections, we will apply (5) and (6) to solve another kind of KdV
equations.

2 Solutions to Another Kind of KdV Equations

2.1 Solutions to a kind of KdV equation
Here , the considered KdV equation takes the following form:
vt+awy+bvyyy+6Tv=0, (9)
where a and b are the constants. It is obvious that this is a generalized kind of variant KdV
equation. Whend = 0, Eq. (9) is just the constant coefficient KdV equation, i.e. ,

Vi + awy + by, = 0. (10)
While whend = 1, Eq. (9) is just spherica KdV equation, i.e. ,
Vi + awy + by, + %v = 0. (12)
While whend = 1/2, Eq. (9) is just cylindrical KdV equation, i.e. ,
vt+awy+bvyyy+2—ltv=0, (12)
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which can be re-scaled to the form of Eq. (3) .
In order to solve Eq. (9) , first the transf ormation

u="Pfv (13)
is taken , then Eq. (9) can be rewritten as
u + at™®uu, + buy, =0 (14)
and then the independent variable takes the following transf ormation:
X = t'a/zy. (15)

Equation (14) is re-scaled as
u o+ at" 2Puu + bt PPy = 0. (16)
Setting the coefficients as
at™®? =a(r), 2 =B (1), (17)
then Eg. (16) takes the same form as Eq. (1) , so one can sdlve Eq. (1) in order to solve Eq. (9).
Substituting (5) and (6) into (1) and balancing the derivative term of the highest order and

nonlinear term to determine nyield the ansatz solution

u= a(t) +a(t)st + a(t)sn%. (18)

Notice that
U = a + a1 + apsn® + (a +2as%) (f 'x + d)cr drf (19)
uc = f(as +2ask)crf drf (20)

uu = flaga + (& +2apap) St + 3ag apsne +2asan% Jerk drf ,  (21)

U = ff2a; - (1+ m?) ausf - 4(1 + m?) apsn +

2m* agsn% + 6m? a;sn€ ], (22)
Up = F - (1+ m) a; - 8(1+ m’) apsf +
6m’ a;sn%, + 24m? ap,sn’e Jerk drf | (23)

where m(0 < m < 1) is modulus.
Substituting (19) , (21) and (23) into (1) yields
a + aiSE + apsn® + a[f 'x + d +0fag -

(1 + m)Bfa]er drf + [2a(f 'x + ¢) +0f(af +2aa) -
8(1 + m)Bflax ]k crf drf + 3ayf[0a, + 2mPBf sn crf drf +

2af[0a, + 12mPBf Jsn® crf drf = 0. (24)

Thus we have
ao(t) = ar(t) = a(t) =0, (25)
a[f'x+ d +0fa - (1 + m?)BfPa] =0, (26)
2a,(f 'x + d) +0f(a +2apa) - 8(1+ m)Bf3a =0, (27)
af[da, +2mPf?3 =0, (29)
af[da + 12mPBf? = 0. (29)
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From which we can determine the constraint between variable coefficients

B (1)

a() =y (y = cong. #0) (30)

and
£(1) = k, g(t) =- Ith((T)d (k = cond. , ¢ = oong.) , (31)
a = c+4(1+ mMYK, a =0, a =- 12mY K. (32)

It is obvious that the constraint (30) requires that the variable coefficients are linearly
dependent , just the same as the assumption given in Ref. [26]. From (17) , one can see that this
constraint is satisfied andy = b/a.

So the exact solution is

u=c+4(1+ m)YK - 2myKsnE = (c+4(1- 2mP)y K + 12mYy KenE  (33)

t
which is the cnoidal wave like solution to (1) , where§ = k[ X - 3'0( (T )d[] .

When m -1, (33) reduces to
u=c+8 Kk - 12y Ktanh€ = c- 4y kK* + 12y kK®sech® (34)
which is siliton-type solution to (1) .
So the cnoidal wave like solution to (9) is
v=tl[c+4l+ mYK - 2my KR ] =

tO[c+4(1- 2m)y K + 12mPy KenZ ], (35)
its corresponding silitorn-type solution is
v=tl[c+8y k- 1y KtanhZ ] = t°[c- oy Kk + 1y KPsech® ],  (36)
where
_ -0, . —28C 15
& = kt [y 2_33tJ. (37)

We consider three special cases:
Case A:® = 0, the constant codficient KdV equation, the cnoidal wave solution is
v=oc+41+ mYyK - 2my KXk =

c+4(1- 2m)y K + 12mYy Ken% | (38)
its corresponding siliton solution is
v=c+8 K - 12y Ktanh®€ = c- 4/ Kk* + 12y K*sech¥ (39)
where
€ = k(y- act). (40)

Case B:® = 1,the spherical KdV equation, the cnoidal wave-like solution is
v=tc+4@1+ mYK - 2my K% ] =

t [ c+4(1- 2m)y K + 12mly K¥en% |, (41)
its corresponding silitor-typed solution is
vt c+8y k- 1y kitanh€ ] = t [ c- 4Kk + 12y Ksech¥ ], (42)
where
& = k' (y +2a0). (43)

Case C:0 = 1/2,the cylindrical KdV equation, the cnoidal wave-like solution is
v=t®c+a4l+ mYK - 2my K% ] =
t [ c+4(1- 2ml)Yy K + 12m% K*en% ], (44)
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its corresponding siliton-typed solution is
vt e+ k- 12y Ktanh® ] = t ¥[c- 4y K’ + 1y KPsech® ],  (45)
where
& = kt Y (y- d4act™?). (46)
2.2 Solutions to the forced KdV equation
The forced KdV equation reads
Vi +OwWy, +Bvex = F(1) (47)
where F(t) isforcing varying with time t; 0 andf3 are the constants.
FHrst , we make a transformation about v, i ,e. ,
v:u+r(0,FU):I¥a)d, (48)
then we have
u +0 [ (1) + ulu, +Buw =0 (49)

It can be easily obtained that the equation (49) has the ansatz solution (18) . Sub-stituting

(18) into (49) yidds
a + a S + asn% + a[f'x+ d +0fay +af a; -

(1+ m)BfPJerE drf + [2a(f 'x + ¢) +0f(af +2a0a) +

2l fa, - 8(1 + m?)Bf 3a, sk crf df + 3 f[0a, +

2mBf Y sn% crf, drf. + 2a,f (0a, + 12mPBfIsnEcrE df =0

from which the undetermined parameters and functions can be determined
t
f=k,g=- ke - IO(J'F(T)CI

and

a =OTC+4(1+ mz)kzg—, a =0, a =- 12m°kK

where k and c are the constants.
So the solution to the forced KdV equation can be written as

2B

a l

v==<
T a

t
- 4(2m* - 1) kzg— +I F(T)d +12m2k2(%cn26
and its corresponding soliton-like solution is
- C 2B ' 2B 2
vt Ak +J' F)d + 12k S-sech¥

where
g = k[ X - ct- O(J']'T F(lIJ)ledf] .

3 Conclusion

(50)

(51)

(52)

(53)

(54)

In this paper , the exact periodic-like solutions to some variable coefficient or forced Kdv
equations are obtained by use of Jacobi elliptic sine function expansion method. The periodic-like
solutions got by this method can degenerate to the solitonlike solutions. Similarly , this solving
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process can be gpplied to other variable coefficient nonlinear equations, such as variable
codfficient KP( Kadomtsev- Petviashvili) equation and some others.
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