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Abstract

A transformation is introduced on the basis of the projective Riccati equations, and it is applied as an intermediate in
expansion method to solve mKdV equation. Many kinds of travelling wave solutions including solitary wave solution are
obtained, in which some are found for the first time.
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1. Introduction

A number of problems are described in terms of suitable nonlinear models, such as nonlinear Schrodinger
equations in plasma physi¢$], KdV equation in shallow water mod§2] and so on, in branches of physics,
mathematics and other interdisciplinary sciences. Recently, special attention has been devoted in literature for
solving nonlinear evolution equations, and many methods have been proposed to construct exact solutions to
nonlinear equations, such as the homogeneous balance njdthdhe nonlinear transformation meth{si6],
the trial function method7,8] and so on. Among them the function transformation me{l®o0], the hyperbolic
function expansion method 1,12], the Jacobi elliptic function expansion methfdd,14] and the sine—cosine
method[15] can be taken as expansion methods, in which some basic functions or transformations from some
famous equation(s) are needed. For example, the basic transformation in the function transformatiofil®ethod
is obtained from sine-Gordon equatif¥6], the bases in the hyperbolic function expansion mefiddi2] are
hyperbolic functions, the bases in the Jacobi elliptic function expansion m§tBgt4] are the Jacobi elliptic
functions[16—19]and the bases in the sine—cosine metli&d are sine and cosine functions.

In this Letter, we will reconsider this case. A transfation is obtained from the vileknown projective Riccati
equationg20-22] and then this transformation is taken as an intermediate to solve mKdV equation. Many kinds
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of travelling wave solutions including solitary wave stduns are derived, among them some are found for the first
time.

2. Analysison the projective Riccati equations

The well-known projective Riccati equatiof0—22]read

11© =pfE)g®). (1a)

g'(E)=q+ pg?E) —rf (&), (1b)

wherep # 0 is a real constant; andr are two real constants. When= —1 andqg = 1, Eqgs. (1)reduce to the
coupled equations given in the referen{2@,21] and whenp = +1 andq > 0, Egs. (1)reduce to the coupled
equations given in the ReR2].

Next, we will analyze the solutions tgs. (1) FromEqg. (1a) one has

17
g§=——. (2)
pf
Substitutingeg. (2)into Eq. (1b)leads to
f'f =217 = paf?+prf*=0. €)
In order to solveEq. (3) we introduce the following transformation
1
f = (4)
w
then
f w’ 1w
T g=——— ®)
f w pw
and
w” + pqw — pr =0. (6)
For the solutions t&q. (6) two basic cases need to be considered. The first basic case is
CaseA:q #0
There are still two cases need to be considered. The first one is
CaseAl: pg <0
Then we can assuni€ = — pq, theEq. (6)can be rewritten as
w” — k°w — pr=0, (7)
and the general solution &q. (7)is
w = ag + a1 SINhk& + az coshké, (8)

whereag=r/q, i.e.,

w= 2 + a1sinh(y/—pg§) + a2 coshiy/— pqé). ®)
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Considering the relation i&q. (5) here we select two special solutions fr&mg. (9) The first one is

w="_+ gsinh(\/—pqé),

q
then
1 q
1= wo ot sinh(y/—pg§)
and
g = tW __1y=pacosiy=pgé)

pw  p r+sinhy/=pgé)
FromEgs. (11) and (12)ne can derive the relation betwegre) andg (&)

1 r24+1
g§=——[q—2rf1+ ff]-
p q

The second one is

r

1
w= 7 + gcosw—pqé),

then
1 q
fo== 7 + cosiy/—pgé)
and
e LW _ _1Y=pasinhty=pge)

pw  p r+coshy/—pgé)
FromEgs. (15) and (16)ne can derive the relation betwegrg) andg(&)

1 r2—1
g§=——[q—2rfz+ f22]~
P q

CaseA2: pg >0
Then we can assuni€ = pq, theEq. (6)can be rewritten as

w” + k*w — pr =0,
and the general solution tq. (18)is
w = ag + a1 Sink& + ap COSkE,

whereag=r/q, i.e.,

w= 2 + a1SiN(\/PgE) + as cos/pgE).

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Considering the relation i&q. (5), here we also select two special solutions friam (20) The first one is

r

1 .
w=— + = sin(y/pgé),
qg 9

(21)
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then
1
fr=m=—— 1 (22)
w  r+sin(/pgé)
and
gam LW _ 1/PaCOS/PGE) (23)
pw p r+sin(/pgé)
FromEgs. (22) and (23)ne can derive the relation betweg) andg (&) is just the same a4d.7).
The second one is
r 1
w=5+5005(\/pq5), (24)
then
1
fam==—21 (25)
w  r+cos/pqg&)
and
. 1w 1/pgsin/pgs) (26)
pw pr+cos/pgt)
FromEgs. (25) and (26)ne can derive the relation betweg¥) andg (&) is just the same a4d.7).
The second basic case is
CaseB:¢=0
ThenEg. (6)can be rewritten as
w” — pr=0. 27)
Its general solution is
w= %éz-i-alf + ao, (28)
wherea1 andag are two arbitrary real constants.
FromEq. (28) one has
1 1
=== 29
5=% &2 + 1€ + ao (9)

and

1w 1 pré4ar
g5=———=———pr 2 . (30)
pw p 5&%+ait +ao

Remark 1. In the Refs[20,21] they considered the case fpe=1 andp = —1, so there is only a special case of
Egs. (15) and (16)

Remark 2. In the Ref.[22], they considered the case fpr= 0 andp = +1, so there are only some special cases
of case A and case B. It is worthy noting that the solutiong given in the Ref[22] are wrong (in Ref[22],
corresponding solutions are ~ t4).

Remark 3. In the Ref[22], the given relation betweefiandg is corresponding t&q. (17)whenp = +1, but no
relation(13), so it is wrong for the cas@ 1) and(12).
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3. Application of solutions from the projective Riccati equations

In the above section, we discuss the solutions to tbgptive Riccati equationsnder some conditions. In fact,
the solutions to the projective Ricca&quations combining the relationstiveen the solutions can construct an
intermediate transformation, and this transformation can be applied to solve nonlinear evolution equations. Here
wheng # 0, the solutions tgf andg are taken as two bases in the expansion method, i.e.,

w@ =Y fO[AfE) +Big®)]+ Ao, AZ+ BZ#0, (31)
i=1
whereu (&) is a nonzero solution to any nonlinear evolution equatiorgn be determined by balancing the highest
order derivative term with the high degree nonlinear term in the given nonlinear evolution equatiofi. st
satisfy the projective Riccati equatiofls, there is the relation betweeghandg

2
5
e sz], j=12324, (32)

1
2

wheres = £1, if j =1, thend = 1, otherwise§ = —1.
Next, we take mKdV equation as an example to illustrate the application of the solutions from the projective
Riccati equations. The mKdV equation reads

ou 20U a3u

- - —— o 33

o T TP (33)
whereu is a real function, and andg are real numbers. We seek its travelling wave solution, i.e.,

u=u), &=x-—ct, (34)
wherec is wave speed. Substitutidtg. (34)into Eq. (33)yields

du >du d3u
—c— - — =0, 35
cdg—i-au d$+ﬁd53 (35)
ie.,
d2
—cu + %u?’ + 'Bd—; = cp, (36)

wherecg is an integration constant.

Applying expansion method, if we take the expansion orderas$ O (1) = n and considering the relatioifs),
thenO(z—“) =n+ 1, so partial balance between the highest degree nonlinear term and the highest order derivative
term leads ta: = 1. Obviously, the formal solution can be written as

u=Ao+ A1f(€) + Big(¢),  AZ+BZ#0. (37)

Considering the relatio(82), from Eq. (37)one can has

3 3 6r
W= [Ag - ;quBf] + [3A331 - %Bf]g + [3A3A1 - ;quBf + ;AoBf]f

2 6 3(r2+6
+ [GAoAlBl + —rBf} fe+ [3A0A§ +—AB2 - MAOBf} 12
p p P4
2 2
+ 30246
+ |:3A%Bl — r » )ijl f2g + |:A? — MA;LB:{I f3 (38)
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and

d?u 2p(r° +68) 2p(r? +96)
i —pgAsf + prBifg+3prAyf?— TBlfzg - ?Al

Substitutingegs. (37), (38) and (39to Eq. (36)yields

73 (39)

6
o+ L (3= a0m2) — ol + | —ear+ L (=20 a182 + L Ao £ 34241 ) — Brgas
A 1 3\ »p T

i o o (2
+|—cBit 5 (—%Bf + 3AéBl>]g + [5 (%Bi + 6AoAlBl) - ﬂprBl]fg
(o (6 3(r° 44
i (—rAle - MAoBf + 3A0A§> + 3ﬂprA1i| f?
3\ p P4
r 2 2
o re+34 2Bp(rc+9)
L pq q
I 3(r°+4 2Bp(r2 46
+ o Ag_ "+ )A]_Bf _MA]_ f3=0. (40)
|3 P4 q
The arbitrariness of the argumentesults in the following algebraic equations
—cAg+ %<Ag - ﬁAoBf) —cp=0, (41a)
p
6
—cA1+ %(—%Ale + ;erBf + 3A5A1) — BpgA1=0, (41b)
—cB1+ % (—333 + 3A531) =0, (41c)
p
af2r 3
3 ;Bl + 6A0A1B1 )| + BprB1 =0, (41d)
6 3(r2+6
%(%Ale - (rT—;)AoBf + 3A0A§) +3BprA1=0, (41e)
2 2
8 2 8
3(3A331— "+ )Bf) L2 g o (41f)
3 Pq q
3(r° 44 2Bp(r2+6
E(AE_MAle)_MAFO, (419)
3 rq q

from which the parameters can tetermined. For example, fér= —1, there are the following solutions

Casel. If Ay=0,A0=0,r =0, then

68p2 c
Bi=4,/———, =—, 42
e Pd=2g (42)

obviously, there is the constraimp < 0.
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Case2.1f Ay=0,A0=0,r #£0, then

3 2c
B =+ ﬂp’ pq:—c r==1,
2u

obviously, there is the constraimp < 0, too.

Case3.If B1=0,A0=0, then

2,2
A== 66%p , pq:—g, r=0.
ac B
Case4.If B1=0,Ap#0, then
2 2 2 3.2
Aoy 3BP202HD [ 32
ac a(r2+2)

there is the constraimt£ 0 andr? + 1.

Caseb. If Ag=0,A1+#0,B1#0, then

2,2
A [P D) L | 3
- dac

with the constraint? 1.
Foré =1, there are the following solutions

Casel. If Ay=0,A0=0,r =0, then

(o]
=
bS]

N

¢
a 9 pq_zﬂ’

obviously, there is the constraint thegt < 0.

=
I
H-
|

Case2.1f B1=0,A40=0, then

o
=
N
B,
N
)

S
s
Il
H_
|
Q
S
=
<
Il
|
I
<
Il
o

Case3.If B1 =0, Ag#0, then

22 2 2
A=+ M Ap==+ Scr

ac a(r2—2)°

there is the constraimts£ 0 andr? # 2.
Cased. If Ag=0,A1+#0,B1+#0,then

362p%(r2+1) +1) 3/317
 dac

A==

pq =

20r2 = e
Br2+2)’

_20% 4+ D
CBOP -

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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Combining the result§ll), (12), (15), (16), (22), (23), (25) and(26) with (37) and from(42) to (50), we can
obtain many kinds of travelling wave solutions to mKdV equaf(i@a):

Typel. Fors = —1, if 8 < 0 andep < 0, then the solution to mKdV equati@83)is

u]_:Blg:ZF\/%tam’( —%E) (51)

Type 2. Fors = —1, if o < 0 andcp > 0, then the solution to mKdV equati¢83)is

ug:Blg=ZF,/—%COt< %é) (52)
[ 3¢ c

Type 3. Fors = —1, if ¢ < 0 andcp < 0, then the solution to mKdV equatig83)is

3 sinh(\/—%¢)
u4=Blg=:F\E i (54)

@ cosh —%5) +1

and

Typed. Fors = —1, if ¢ < 0 andep > 0, then the solution to mKdV equati¢83)is

3c COE( %é)
us = Big =y~ — VT (55)
sin( ch)il
and
sin(, /%<&
uo= Brg =+ L%#_ (56)
¢ cog ch)il

Typeb5. Ford = —1, if ac > 0 andcp > 0, then the solution to mKdV equati@B3)is

u7=A1f=ZF\/§SGC)’<\/€§>. (57)
o p

Type 6. Fors = —1, if ec > 0 andcp < 0, then the solution to mKdV equati@B3)is

u8=A1f=i,/gcsc< —55) (58)
o B
6¢ c
ug:Ale:I:,/—Se< ——E). (59)
« B

and
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Type7.Fors = —1, if ac > 0 and(r? — 1)cB < 0, then the solution to mKdV equati¢@3)is

3cr2 2(r2 = e 2p2(r242
u10= Aot ALf =+ : " ( . )e [3B°p ( ) :
a(re+2) pB@rc+2) COSf( 2(1-r?)c )c )

BG2+2)

with the constraint that £ 0 andr? + 1.
Type8. Fors = —1, if we > 0 and(r? — 1)¢B > 0, then the solution to mKdV equati¢@3)is
3cr2 N 20r> = D [3B2p2(r2 + 2)

a(r2+2)  pBr2+2) ac sin( i}((rZ;lz))c )47
re+

unn=Ao+A1f ==

and

3cr2 2r2 = 1c [3p2p 2(r2+2)

Ol(l’2+2) pﬂ(r2+2) CO# 2(2‘22 12))c ) ,
re+

upp=Ao+A1f ==

with the constraint that # 0 andr? # 1.

Type 9. Fors = —1, if a < 0, ¢ < 0 andr? > 1, then the solution to mKdV equati¢83)is

382p2(r2 — 1) 1 3¢ sinh(,/—%¢)
uiz=A1f + Big= iﬁ Tl > F.— -
P ¢ cosH,/—%&) +r * cost(,/—F§) +r

with the constraint? # 1.

Type 10. For§ = —1, if o < 0, ¢f > 0 andr? < 1, then the solution to mKdV equatigB3)is

2c
382p2(;2 — 1 1 3¢ cod\/5¢)
uia= Arf + Brg = £ [P Uit Sy . . AL

Bp o sin(/Zg) +r * sin(,/Z€) +r

and

382p2(r2 — 1) 1 3 sin( %¢)
uis=A1f + B1g = i— + R S

Bp o o /ZE) +r * coq,/58) +r
with the constraint? # 1.

Typell.Foré =1, if o8 < 0 andcp < 0, then the solution to mKdV equati¢83)is

3c c
=B1g = —coth{ /|——¢&).
u1e= B1g = F,/ ., co ( 2;35)

Type 12. For§ =1, if ac < 0 andep > 0, then the solution to mKdV equati¢83) is

6¢ c
urr=A1f =F—— CSC"(,/ —$>-
o B

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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Type 13. For§ = 1, if ac(r® — 2) > 0 and(r? — 2)cB < 0, then the solution to mKdV equati¢@3)is

3cr? 2(r + 1)C 382p 2(7 -2
=Ag+A1f ==+ 68
uisg o+ Arf C((VZ _ 2) pﬂ(r SII"II'K 2(l+r2)c ) p ( )

B2-r?)

with the constraint that £ 0 andr? + 2.

Typel4.Foré =1, if a8 < 0 andcp < 0, then the solution to mKdV equati¢83)is

382p2 1 1 3c COSf‘( —éé)
ug=A1f + Big = i—‘/ Fp (r D : = JF\/—C _ = i (69)
Br sinh(,/—%¢§) +r * sinh(,/—%§) +r

Obviously, the solutiong1, up, us, u7, ug, ug, uig andui7 are general solitary wave solutions and periodic
solutions expressed by sine—cosine functions which can be found in the usual expansion methods, such as the
function transformation methof®,10], the hyperbolic function expansion methfiil,12] the Jacobi elliptic
function expansion methdd3,14]and the sine—cosine methfitb]. But the solutionsy, us, us, u1o, 111, u12,
u13, u14, 15, u1g anduig cannot be obtained in these expansionhuds. These solutions are new type solitary
wave solutions or new type periodic solutions expressed by sine—cosine functions, and some of them have not been
found before.

4. Conclusion

In this Letter, we introduce a new transformationnfréhe projective Riccati eqtians and apply it to solve
mKdV equation. Many solutions are obtained for this mKdV equation, such as solitary wave solutions constructed
in terms of hyperbolic functions, periodic solutions expressed in terms of sine and cosine functions, some solutions
are not given in literature to our knowledge. Of courses thansformation can be also applied to other nonlinear
wave equations. Furthermore, in this Letter, we correct some errors found in some literature.
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