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Abstract

A fractional transformation is introduced to solve modified KdV (mKdV for short) equation, where this fractional
transformation is used to map the solutions of an elliptic equation to another elliptic equation. Thus, more new kinds of solutions
are obtained, such as rational periodic wave solutions, rational solitary wave solutions and so on. It is shown that this method is
more powerful to give more kinds of solutions.
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1. Introduction

Since much attention has been paid to the study how to solve nonlinear models, many methods have been pro-
posed to construct exact solutions to nonlinear equations. Among them are the sine—cosine method [1], the homoge-
neous balance method [2,3], the hylpaic tangent expansion method [4,8]e Jacobi elliptic function expansion
method [6,7], the nonlinear transformation method [8,9], the trial function method [10,11] and others [12—-14].

Apart from methods mentioned above, direct algebra method [15,16] has its own advantages: it is simple and
has a strong operabilitywhere the solutions of nonlinear wave eqaat are mapped to those of simple equations.

In Refs. [17-19], elliptic equations have been applied aspping to obtain many kindsf periodic solutions.

In this Letter, we will reconsider elliptic equation [20]

¥'2=ag+a1y? +azy*, (1)
ie.,

y' = a1y + 2azy®, 2)
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where the prime denotes the derivatives in terms of its argument and apply it to solve mKdV equation for more
kinds of solutions.

2. mKdV equation

mKdV equation reads [20]:

ut+au2ux+,3umx=0 (3)

and it is met in many fields, such as shallow water model, plasma science, biophysics and etc.
We seek its traveling wave solutions in the following frame

u=u(§), §&§=kx—ct), (4)
herec is wave velocityk is wave number.
Substituting Eqg. (4) into Eqg. (3) and integrating once yield
—cu + %u?’ + Bk%u" = D, (5)

whereD is an integration constant.
For Eq. (5), there are two cases needed to consider, the first @ne-i8, Eq. (5) can be rewritten as

" ¢ o 3

- _ 6
gi2" ~ 3pk2” (©)
obviously, this is just the elliptic equation (2) with
Cc o
= —7, = —— 7
M=z T T gpiz 0

it has many more kinds of solutions, we will show some next expressed in terms of different Jacobi elliptic
functions [20].

(1) Ifag=1,a1=c/(Bk?) = —(1+ m?) andar = —«/(68k%) = m?, then the solution is

uy=sng,m), (8)

where 0< m < 1, is called modulus of Jacobi elliptic functions, see [20-24], arig, sm) is Jacobi elliptic
sine function, see [20-24].
(2) If ag=1—m?, a1 =c/(Bk?) = 2m? — 1 andas = —«/(6Bk?) = —m?2, then the solution is

uz =cn(&, m), 9)
where cri&, m) is Jacobi elliptic cosine function, see [20-24].
(3) If ag=1—m?, a1 =c/(Bk?) =2 — m? andar = —a/(6Bk%) = —1, then the solution is
uz =dn, m), (10)

where dii&, m) is Jacobi elliptic function of the third kind, see [20-24].
(4) If ap=m?, a1 = c/(Bk?) = —(1+m?) andar = —a/(68k%) = 1, then the solution is
1

uga=ngE, m) = prr—_ (12)
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(5) If ag=—m?, a1 = ¢/(Bk?) = 2m? — 1 andar = —a/(68k%) = 1 — m?, then the solution is

1
us=nc&, m) = e (12)
(6) If ap=—1,a1=c/(Bk? =2 —m? andas = —a/(6Bk%) = m? — 1, then the solution is
1
(7) fap=1,a1=c/(Bk?) =2 —m? andas = —«/(6Bk%) = 1 — m?, then the solution is
_ _ sni&, m)
u7 =s0§, m) = pvr— (14)
(8) If ap=1,a1 = c/(Bk?) =2m? — 1 anday = —a/(68k%) = (m% — 1)m?, then the solution is
_ _ sn&,m)
ug=sdg,m) = anG.m)’ (15)
9) If ag=1—m?, a1 =c/(Bk? = 2—m? andaz = —a/(6Bk?) = 1, then the solution is
. _cn(g, m)
ug=CcY&,m) = P (16)
(10) Ifag=1,a1 =c/(Bk?) = — (14 m?) andaz = —a/(68k?) = m?, then the solution is
B _cn(E, m)
uio=cd&,m)= anE.m)’ (17)
(11) If ag=m?m? — 1), a1 = ¢/ (Bk?) = 2m? — 1 anda = —«/(6Bk2) = 1, then the solution is
_ _dn(&,m)
u1y =ds(§, m) = e (18)
(12) If ag=m?, a1 = ¢/(Bk?) = —(1+ m?) andas = —a/(68k3) = 1, then the solution is
B _dn(&,m)
uipz=do¢, m)= nE.m)’ (19)

There still exist many other kinds of Jacobi elliptic functions, we do not show here. Itis known thatwheh,
sn(&, m) — tanhg, cn(&, m) — seche, dn&, m) — seche and whenn — 0, sn&, m) — sing, cn(é, m) — COSE,
so we also can derive solutions expressed in terms of hyperbolic functions and trigonometric functions.

The second case for Eq. (5)5+# 0, there will exist different kinds of solutions. In order to solve Eq. (5), we
introduce a fractional transformation, i.e.,

bo + b1y?(£)
)= —->-, 20
&) 1+ bay2(E) (20)
wherey (&) is given by Egs. (1) and (2).
In order to obtain nontrivial solutions, there is a constraint
bobo — b1 #0 (21)

for the fractional transformation. Through the fractal transformation (20), the solutions of Eq. (5) with-£ 0
are mapped to those of the elliptic equation (1) or (2).
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Considering the fractional transformation (20) and the elliptic equation (1) or (2), we have

ao + (2a1 — 3agh2)y? + (3az — 2a1bp)y* — azby®

" = 2(b1 — bob 22
u” = 2(b1 — bob2) RN (22)
L3 _ b3 +308b1y% + 3bobdy* + b3y 23)
1+ 3bay? + 3b3y* + b3y°
Substituting Egs. (20), (22) and (23) into Eqg. (5) results in
[2aoﬂk2(b1 — boba) + %‘bg — cbo— D]
+ [2BKk?(b1 — bob2)(2a1 — 3aobz) + abZb1 — c(2bobz + b1) — 3Dby]y?
+ [2Bk2(b1 — bob2) (3az — 2a1b2) + abob? — c(bobs + 2b1b2) — 3Db3]y*
+ [—Zﬂkz(bl — bobo)azbs + %‘bi — cb1b3 — Dbg] yo=o0. (24)
The arbitrariness of argumefffor functiony(¢) leads to the consistency conditions
2a0Bk2 (b1 — boby) + %bg —¢ho— D=0, (25)
2Bk%(b1 — bob2)(2a1 — 3aghz) 4+ ab3by — ¢(2bobz + b1) — 3Dby =0, (26)
2Bk?(b1 — bob2) (3az — 2a1b) + abob? — c(bob + 2b1b2) — 3Db3 =0, (27)
—2BKk2(b1 — boba)azby + %bi — cbyb2 — DH3 =0, (28)

We can see that there are rich structures resulted fgs. (25), (26), (27) and (28) in the range of parameter
values of (5). Here we show two special cases.

Casel. bg=0,b1#0and by #0

In this case, Egs. (25), (26), (27) and (28) are rewritten as

2a0Bk’b1 — D =0, (29)
2Bk?b1(2a1 — 3aghs) — cb1 — 3Dby =0, (30)
2Bk?b1(3az — 2a1bz) — 2cb1by — 3Db3 =0, (31)
—2Bk2azbaby + %‘bi — cb1b2 — DH3 =0, (32)
from which we can obtain
D 4a1 8k — ¢
=D o (33)
2a0Bk 12a08k
with constraints
= 16,32k4(af — 3apaz) (34)

and

(4a1Bk? — ¢)® + 6¢(da1Bk? — ¢)? + 144agarB2k* (4a1Bk? — ¢) — 720 D? = 0. (35)
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From constraint (34), we know that
(36)

a% — 3apaz > 0.
Recalling the solutions to Eqgs. (1) or (2), i.e., solutions fremto u12, we can obtain another new rational

Ula
(2) If ag=1—m?, a1 =2m? — 1 andap = —m?, thenaf — 3agaz = 1 — m? + m* > 0 and the solution is

periodic solutions.
(1) If ap =1,a1 = —(1+m?) andap = m?, thena? — 3apaz = 1 — m? + m* > 0 and the solution is
y1=sné,m), (37)
_ 6Dy%(£) 3 6D S (&, m) (38)
 12a0Bk? + (da1Bk? — ©)y2(§)  12a0Bk? + (da1Bk? — c) SP(E, m)’

(39)

Y2 = Cn(é, m),
B 6Dy?(&) B 6D Cré(&, m) (40)
20 = T200Bk2 + (Aa1pk2 — 0)y2(E)  12a0Pk? + (darpkZ— c) Cre(E. m)’

(3) Ifap=1—m?, a1 =2—m? andaz = —1, thena? — 3agaz = 7 — 7m? + m* > 0 and the solution is

ya=dn(§, m), (41)
6Dy2(&) 6D dré (&, m)
13 1200k + (Ba1fkZ — c)y2(E) 12a08k2 + (4a1Bk2 — ¢) dré(E, m) (42)
(4) If ap =m?, a1 = —(1+m?) andaz = 1, thena? — 3apaz = 1 — m? + m* > 0 and the solution is
ya=ns§,m) = M, (43)
vao — 6Dy2(&) _ 6D NS (&, m) (44)
12a0Bk? + (4a1Bk? — ¢)y2(§)  12a0Bk? + (4a1fk? — c)nF(E, m)’
(5) If ap = —m?, a1 = 2m? — 1 andap = 1 — m?, thena? — 3agaz = 1 — m? + m* > 0 and the solution is
1
ys=nc&, m) = Mv (45)
6Dy2(£) 6D nE(&, m)
50T 1200Bk2 + (4arBk? — ©)y2(€)  12a0Bk? + (4arBk? — o) nE(E, m)’ (46)
(6) If ap=—1,a1 =2—m? andap = m? — 1, thena? — 3agaz = 1 — m? + m* > 0 and the solution is
ye =nd(&, m) = m, (47)
6Dy2(£) 6D nd? (&, m)
Ugy = = . (48)
12a0Bk2 + (darpk? — )y2(&)  12a0Bk? + (4a1Bk? — c)ndB(&, m)
(7) Ifap=1,a1 =2 —m? andaz = 1 — m?, then thea? — 3agaz = 1 — m? + m* > 0 and solution is
¥7 = SUE, m) = i:i :3 ’ (49)
6Dy?(&) _ 6D sC(&, m) (50)
—0)y2(§)  12a0Bk? + (4a1pk? — c) s (&, m)’

1T = 1 200Bk2 + (da1 k2



368 Z. Fuetal./Physics Letters A 325 (2004) 363-369

(8) If ap =1,a1 =2m? — 1 andaz = (m? — 1)m?, thena? — 3apaz = 1 — m? + m* > 0 and the solution is

_ _ SN, m)
yg =Sd&, m) = anE. m)’ (51)
6Dy2(&) 6D s (&, m) (52)
u = = .
8 = 1 2a0Bk2 1 (darfk? — ¢)y2(€) 12a0Bk? + (4arBk? — ¢) s (€, m)
(9) Ifag=1—m?, a1 =2—m? andap = 1, thena? — 3agaz = 1 — m? + m* > 0 and the solution is
B _cn, m)
6Dy2(£) 6D cS (€, m) (54)
Uugg = = .
%7 12a0Bk2 + (4a1Bk? — 0)y2(€)  12a0Pk? + (Aarfk? — c) CR(E, m)
(10) If ag=1,a1 = —(1+ m?) andaz = m?, thena? — 3agaz = 1 — m? + m* > 0 and the solution is
3 _cn(E, m)
y1o=Ccd&, m) = anG.m)’ (55)
2
i, 6Dy2(£) 6D cd?(£,m) (56)

T 12a0Pk2 + (darfk? — 0)y2(E)  12a0Bk2 + (4arfk? — ) cP(E, m)
(11) If ag=m?(m? — 1), a1 = 2m? — 1 andaz = 1, thena? — 3apaz = 1 — m? + m* > 0 and the solution is

dn(g, m)

yi1=ds&, m) = M7 (57)
6Dy2(§) 6D dS2 (&, m)
Ullg = > > ) = . (58)
12a0Bk? + (4a1Bk? — c)y2(§)  12a0Bk2 + (4a1Bk? — ¢) dS (&, m)
(12) If ag=m?, a1 = —(1+ m?) andaz = 1, thena? — 3agar = 1 — m? + m* > 0 and the solution is
3 _dng, m)
6Dy2(§) 6D dc2(&, m)
Ul2q = > > ) = . (60)
12a0Bk? + (4a1Bk? — c)y2(§)  12a0Bk2 + (4a1Bk? — ¢) (&, m)
Case2.bg#0,b1=0and by #0
In this case, from Egs. (25), (26), (27) and (28), we can derive
D 12a, k>
, 2B (61)

bo=———b>, =——F
0= 2appK2 % da1fk? — ¢
with constraints (34) and (35). Similarly, we can obtain solutions just similar to solutionsifieno «12,, here

we omit the details.
3. Conclusion

In this Letter, we reconsider elliptic equation in agiph to solve nonlinear wave equations, taking mKdVv
equation as an example, more kinds of solutions are eeérikom there, including rational periodic solutions,
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rational solitary wave solutions constructed in termshgperbolic functions, periodisolutions expressed by
trigonometric functions andegiodic solutions dealing with ellipticuinctions. In order to derive rational type
solutions, a fractional transformation must be introduced. Of course, whether there is application of similar
fractional transformation to other nonlinear wave equations is still an open question.
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