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First. applying Lhe Jacobi elliptic sine function expansion, basic travelling wave solutions of some
nonlinear cvolution equations are obtained. Second, accerding to the lormal invanance of nonlinear
evolution cquations, the sister travelling wave solutions, which have the same wave speed as the basic
ones, are derived. Finally, we show that a suitable linear combination of these two solutions results
in 2 combined travelling wave solution, whose wave speed is different from those of the basic and
sister travelTing wave solutions. The combination of travelling wave solutions to nonlincar cvolution
equations must satisty certain conditions. — PACS: (03.63.Ge.

Kev wards: Basic Travelling Wave Solution: Sister Travelling Wave Solution:
Combined Travelling Wave Solution.

2. The First Kind of Nonlinear Evolution
Equations

1. Introduction

It is important to find exact solutions of nonlinear
wave cquations in nonlinear problems. Recently. vari-
ous methods have been proposed, such as the homoge-
neous halance method [1.2], the hyperbolic function
expansion method [3,4], the sine-cosine method [5].
the nonlinear transformation method |6 8], the trial
function method [9, (], and the Jacobi elliptic func-
tion expansion method [11, 12]. These methods can be
applied to obtain travelling wave solutions which in-
clude shock or solitary wave solutions, periodic solu-
tions [ 13— 15] and s on.

In this paper, the basic travelling wave solutions 1o
some nonlinear evolution equations are oblained by
applving the Jacobi elliptic sine function expansion
method [11, 12]. Then, according to the formal invari-
ance of nonlinear evolution equations, the related trav-
elling wave solutions, which are called sister travelling
wave solutions of the basic ones, are derived. Finally,
we show that a linear combination of these two solu-
tions under certain conditions, where the wave specd is
different from those of both the basic and sister travel-
ling wave solution, are also a travelling wave solution
to the nonlinear wave equation. This phenomenon is

2.1. The Traveiling Wave Solution

The first kind of nonlinear evolution equations in-
clude the Korteweg de Vries {KdV) equation

tty = Mty + Bty =0, (1)
the Benjamin-Bona-Mahony (BBM) equation

ty — Cotty — sy + Pty = 0, 2)
the Boussinesq equation

Hyr — Rt~ Oitpegy — Blu?) e = 04 i3)
and the nonlinear Klein-Gordon equation (A)

by — Chity | O— Bu? = D, (4

We seek travelling wave solutions of (1) through (4)
in the form

w=ulE), &=kix—a), (5)

called the combinability of travelling wave solutions
in this paper.

where & and ¢ are the wave number and wave speed.
respectively.
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Substituting (5) into { 1) to {4), or integrating once or
twice and taking the integration constants as zero, we
obtain

d£2+eou+cm2*0 (6)

He.re e, ex and ey are constants which depend on the
corresponding Eq. (1) to (4). For the KdV equation one
finds

:Bkz.‘ €r = —¢,

£y = E (7)

In case of the BBM equation one has

=Bkc. ex=c—co, e3=— (8)

va) —

The Boussinesq equation leads to

e =ak®, ex= (> —cf), e3=4, {9
and the nonlinear Klein-Gordon cquation (A] to
eg=—f. (1)

e =k — ). er=a,

2.2. The Basic Travelling Wave Solution

By using the Jacobi elliptic function expansion
method [11,12], #(&) in (6) can be expressed by

Uy = ap+ apsnE, (n
with
an:—;;+72(]zﬁ2)e', “2:_69_3”1 (12)
and the modulus m(0 < m < 1} satisfying
e = 16(1 —m* + m*)e? (13)

where sn& is Jacobi elliptic sine functon [16-19].

The constraint (13) can be used to determine the
wave speed of the travelling wave solution i. For the
KdV equation, it has the value

¢} = 16{1 —m* +m*) B2, (14)
For the BBM equation cne has
(c) —e)® = 16(1 —m* +m*) B e (15)
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for the Boussinesq equation

(¢ — ¥ = 16(1 —m® +m* e, (16)
and for the nonlinear Klein-Gordon equation (A)
o = 1601 —m® + m* o] - f)2 an

When m — |, the basic travelling wave solation (11)
reduces Lo

i) = gy + aytanh®&,
6, (9

o3 ey ey

er e
2

with ag = —

2.3. The Sister Travelling Wave Solution

Next, we will show that there exists a sister travel-
ling wave solution to (&), which is closely related to the

just given basic solution. It takes the form

43 o . _ 1

Uy =dap+—=ns"¢, with nsé =—, 19
2=+ _ns7E, g onZ (19)

where g and «; are the same conslants as in (12) and

(13). Denoting the wave speed of the travelling wave

solution (19) as ¢z, we have

(20)

=1,

i.e. the basic travelling wave and its related sister have
the same speed, although their shapes are different.

The derivations of {19} and (20) are as foellows. Set-
ting

v=asn’s, w =ag+v, (21
in (11), we can easily prove that v satisfies
d*v 6
Lléz 2ag—4(l+m )1+--2—v (22)
We define
W= %nszﬁ, Wy = ap -+ w. (23)
H

Using nsé = | /sn&, one can prove that w satisfics

d'?, ) & 2
fﬁ* —4(1 + w2 )w + a—n:wz,

which has the same form as (22).

(24)
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It & satisfies {6), then wy also satisties (6). This is
shown by differentiating u» = ag+w twice with respect
to & and utilizing {12) and (24), which leads to

d2u2 2
€] —55 Teamz +ezu;

déz‘

e —16(1 —m?+m"Ye?
!
4({3

=

(23)

Itis obvious that, if and only if {13) is satisfied, then
(19} is another travelling wave solution of (6). Since
the wave speed of (19) is the same as that of (11}, we
call {19) the sister travelling wave solution of the basic
one (11).

When s — |, the sister travelling wave solution { 19}
reduces to

1o = ag -+ apcoth®
(26)

. " de
withag=—32+71, @ =

o
3

2.4. Combinability of Basic and Sisier Travelling
Werve Sofutions

We now show that a particular combination of i) =
ap + vand 2 = ay + w, defined by

5 a
m=ag+v+w=agtayné+ m—_zznszﬁ._ (27

is also a travelling wave solution of (6} with the con-
straint

el =16(1+ I4m2+m4}e%. {28)
This constraint implics that the wave speed ¢3 of (27)
15 different from ¢y of (11} and s of (19). The wave
velocity of the KdV equation is given by

& = 16{1+ 14m® + m*}p2*, (29)
that of the BBM equation by

(e3 —eo)> = 1601 4 1+ mM B2 CS,  (30)
of the Boussinesq equation by

(3 gl = 1601 + 14 +m*)o’k*, (31

and for the nenlinear Klein-Gordon equation {A) one
finds

o = 1601 + 14m> +m* )i (5 — )7 (32)

Similarly, differentiating (27) twice with respect to
£ and using (22} and (24), we have

du;y 2 ed—i6(1+ 14m? 1 m)el
¢ —déz +eans + equs + — der L=0.
(33

It is chvious that, if and only if (28) is satisfied, then
(27} is anather travelling wave solution to (6) with the
wave speed c3.

When m — 1, the combined travelling wave solution
(27) reduces to

. e de 6e
W]thuU:——+—, t?z:——l.
26?_3 £3 €3

3. The Second Kind of Nonlinear Evolution
Equations

3.1, The Travelling Wave Solution

The second kind of nonlinear evolution equations
mKdV equation

t + 0ty + Bitgey = 0, (33)
the mBBM equation

wy + coity + Oty + Bty = 0, (36)
and the nonlincar Klein-Gordon equation (B)

e — it + 0t — Pu = 0. 37

Substituting {3y into (35) to (37), or integrating once
or twice and taking the integration constants as zero,
we have

du
2 @ +egt 4 ey’ =0, (38)
Here €, ¢2 and 3 are again constants, which depend
on (35) to (37). In case of the mKdV equation, one
calculates

. o

e =B, e=-c e= (29)
for the mBBM equation, it is

£ = ﬁkzc, € = ¢ — . £} = ~— (40)

3“»
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and for the nonlinear Klein-Gordon equation (B}

e =k (F—¢f), =0 ea=-F @)

3.2, The Basic Travelling Wave Solution

By using the Jacobi elliptic function expansion
method [11.12], w(&) in (38) can be expressed for
these nonlinear equations as

u) = dasné 42
with

a) = ivf?;i_m (43)
and the modulus m {0 <0 m < |} satisfying

ey = (1 +mble. 4

The constraint (44) can be applied to detcrmine the
wave speed of the travelling solution ;. For the mKdV
equation ome calculates

cr = —(14+m>Bi°, (45)
for the mBBM equation

¢y —cg = 16{1+m’)Bkc,, (46)
and for the nonlinear Klein-Gordon equation (B}

o = (1 +m* ) (et — cd). (47)

When m — 1, the basic travelling wave selution (42)
reduces to

2(’|
€3 ’

# =ajlanhé  with @) = :tv — (48)

3.3. The Sister Travelling Wave Solution
Also in these cases we can show that there exists a
sister travelling wave solution to {38} It has the form

Hy = ﬂnsﬁ, with nsé = (49)
m

1
sné’
where ¢ is the same constant as in (43), and also (44)
holds for this sister solution (49). Denoling again the
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wave speed of the travelling wave solution {49} as ¢;,
we have
oy =, {50)
The derivations of {49} and (50} are similar to those
in the previous case, We can easily prove that i, in (42)
satisties
2t 3

dz.’.ﬂ ;
gE = —(1 +m*u +?H‘1.

In the same way it can be proven that w3 satisfies

(31

2 2
((11;22 =—(1 +m*juz + %u%.
Obviously. both w2 and u, satisfy the same equation
(38). Therelfove up in (49) is another travelling wave
solution to {38).
When m — |, the sister travelling wave solution (49)
reduces to

(52)

{2
u» = qjcoth,  with (J.zi\j—ﬁ,
€3

(53)

3.4. Combinability of Travelling Wave Solutions

Also for these nonlinecar equations we can show that
the combined solution

w3 = uy +uy = asnd 4 Elnsg" (54)
i

is also a travelling wave solution of (38). It satisfies the
constraint

e2 = (1 +6m+ e, (55)
which implics that the wave speed, 3 of (54) is differ-
ent from those of {42} and {49). For the three nonlinear
equation we obtain the mKdV equalion

cy=—(1+ 6m+mz),8k2._ (56)
the mBBM equation

{ca—co) = (1 +6m | m~)Bk%ca, (57
and the nonlinear Klein-Gordon equation (B}

o = {1+ 6m+m )}k (3 — ef ). (58)
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() Basic traveling solution wy

(b) Sister iraveling solution i

{cy Combined traveling solution ws

Fig. | Graphical presentation for various solutions ol the mKdV equation when ¢ = 6.0, = — 1.0, k=20 and m= 0.5

Similarly, differentiating (54} twice with respect 1o
& and using (51) and (52), we have

d?u3

e @ + (1 +6m+m2)e1u3 —'y—e;,ug =0

(59)

It is obvious that, if and only if (55) is satisfied, then
(54) is another travelling wave solution to (38) with
wave speed c3.

Taking the sclutions of the mKdV w1, iz and iy as
an example, the graphical presentations of 4, uz and
ua for different times ¢ and locations x are shown in
Figure 1. It is obvious that the graphical presentations
of uy, uy and u; take different shapes, and the velocity
3, which is the same as ¢y. is also different from 3.

When m — 1, the combined travelling wave solution
{54) reduces to

2
u3 = artanhé +apeothE, with ay == £ ff. (60)
3
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