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1. Introduction

The elliptic ordinary dilferential cquation (EQDE}
plays an important role in finding travelling wave so-
lutions of nonlingar evolution equations. By mcans
of the EQODE, various periodic solutions and solitary
wave solutions can be obtained [ 1 - 9]. Furthermore, if
more properlics of EODE arc [ound, further solutions
of nonlincar evolution equations can be more easily de-
rived. In the next sections, we will show some proper-
ties of EODE. where many examples are used to illus-
trate these properties.

2, The Elliptic Ordinary Differcntial Equation

[n order to find travelling wave solutions, which in-
clude the periodic and solitary wave solutions, the non-
linear partiaj differential equations (NPDE). especially
the neniinear evolution equalions. are often reduced to

the following EQDE [10]
)-"2 Coag ba vk a:}-‘z —a]ys +a4lv4, ()

where the prime denotes d/dé&.
For example, the Korleweg - de Vries (KdV) equa-
Lion reads

2)

ty ity — Pty =10

We seck its travelling wave solutiens of the form

u-u(€), £=x-. (3)
Then (2) reduces to
iy du dii
—ti——c— =10 4
Pae i “a “

Integrating {4) with respect 1o & twice vields

2
o=

(W 3cu® —6Au—6B8), (3)

!
3p
with two integration constants A and B. Obviously. {(5)
is a special kind of (1) with ag .- %‘5 a = %, =5
3 %_’r and a4 = 0,

Similarly, the combined Korteweg - de Veles - mo-
dified - Korteweg - de Vries (KdV - mKdV) cquation

Hy + iy + G, | Bityr =0 (6}
can be rewritten as
[ 2 be o 124 12K.
W= — |t —Efc" RPN kP
6f o o4 o o -

where again A and 8 are two integration constants. Ob-
viously, (7) is unother special kind of (1) with ¢y = %

t t o,

qyp = %, oy = R Wy =

— o
ki and Hy = —m.

3. EODE of the First Kind

Consideringa) —ax - Qund ay £ 0, a2 £ 0, a4 # 10,
then (1) reduces to

£
e
L

= dn + ey +agy’, (8)
which may be called 1HO12E of the first kind.

Next, we will show that there exist some interesting
properties.

Property 1. If y is a solution 1o (8). then z = 1 sat-
isties

2 2
77— ay b Fapst (9

0932-0784 7 (15 7 08000566 § 06,0015 2003 Verlug der Zeitsehrlft fir Naturforsehung, Tabingen - hup:fznaturforsch.com

fof



5. Liu eral. - Some Properties of the EODE

0.5

3001

200 1

100 {

-0 R 5 7 _U]

—100

that is to say, (9) has the same form us (8} with only ay
exchanged by a4, 5o both v and % are solutions of (8)
with ay = aq and ay = ayp. '

From this property, we can easily derive a solution
to (8) from another solution. Actually, from these two
solutions we can also construct more solutions based

Fig. 1. Graphical presen-
tations  of the solutions
¥ — sn{t.m) (top) and 7 —
ns(s,om) (bottom) lor m —
05,

on the possibility to combine travelling wave solutions
to the nonlinear equation [11]. This can be iNustrated
by some examples next.

Example 1. The equation

"

Yi=1—(1 by ey, 0<mal, {1
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Fig. 2. Gruphical presen-

the solutions
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and

line) lor e = (0.5,

pre-

Graphical
sentations for solutions
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line) and v

dnit.e

{dashed line) torm — 0.5,

Then equation

has a solution

(12}

O<m=1,

-
2

il el

)

+ m”

g

=i
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y=sn{E. m)}.
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has 'a solulion

(13

o 1
I=ns(g.m) : Sa(Em)’
where sn(£.m) is the Jacobi elliptic sine function with
the modulus # [ 10, 12~ 14].

The graphical presentations of v {top) and  (bot-
tom) with m = 0.5 for ditferent urguments ¢ are shown
in Figure I, It is obvious that the graphical presenta-
tions of ¥ and z show ditterent behaviors, v is bounded
but z is sometimes blowup. both of them are periodic
argument {,

Example 2. Similarly, ¥y = en{& ., m) is a solution to
equation

V2=l —md) (2wt 1) — Py, (14)

then z = ne{&.m) = ﬁ is a solution to equation
y . I
2= —mt (2m* = N2+ (1 —m)t (15)

where en(&,m) is the Jacobi elliptic cosine function
[10,12-14].

Example 3.
tion

If y = dn(&.m) is & solution to equa-

Vo= {1—m 4 (2 m)? -y (16

then z = nd{&.m) =
tion

Lo, : I
TR also a selution W equa

12

D=2 e = (=Y, {17y

where dn(&.m) is the Jacobi elliptic function of the
third kind [ 10,12 -14].

Tuking the solutions y = dn{t.m) and 2 nd{r,m)
in Example 3, the graphical presentations of v {solid
line} and z (dashed line) with m = 0.5 for dilferent
arguments ¢ are shown in Figure 2. Tt is obvious that
the graphical presentations of y and z show mirror-
symmetry and have the same period and amplitude but
inverse phases,

Example 4. The equation

l—m? 1w I —m
2 2 4
= : o 1%
1 7Y + 7 7 (18)
has the solulion
colé,m | —sn(&,m)
L G 1w, o
1+ sn{E. m) cnl(S,m)
Since ¢y = aq, it must have another salution
cn(é, m | +sn(é.m
yp= SnGm) L +sn(S.m) (20}
l —sn{&.m) en(E.m)

569
Example 5. Similarly, the equation
- Ji ! —|—m2_\‘2 _l 'f_ﬁ WD
4 2 4
has the two solutions
o dn(E.m) 1 —msn{E m)
= Lhmsn(Eom)— dn(& m) o
dn{&.m) | +msn(& m) -
V2T = -
2 —msn(E,m) dn{&.m)

The graphical presentations of ¥ (solid line) and v,
{dashed line) with m = 0.5 for diflerent arguments ¢
are shown in Figure 3. [t is obvious that the graphical
presentations of ¥ and y; show rotational symmetry
and have the same period and amplitude but 180 degree
rotational phasc difference.

Fxample 6. The equation

a
2 m- Z
¥

=— ———y f —y 23
PR (3
has the tollowing two solutions
msn (&, m) | —dn(&,m)
v = - )
AT dn(&.m) msn{& m) (24)
o omsn{Eom) P —dn{é,m) -
279 dn(&,m) "~ msn(E,m)

Property 2. If Ay, with A a nonzero constant, is a
solution to (8), then 7 = :i| satisties
W 4

12 S
b =cr4/14 |- ¢taZ +F" .

(25)
so Ay is another solution to (8) with ap = aqA?
and a4 = an/A*. Based on this properly, we can ob-
tain more solutions to nonlinear equations, which is
demonstrated below by some examples.

Example 7, The equation

2
VI AT (14 m i—:zl—_vd' (26)
has a solution
v Ay =A-sn{€.m), (27)
then the equation
P =mAT— {1 — ) - %:“ (28)
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has a solution
7 - A-ns(E,m). (29)

Similarly, (urther examples of this type can be ob-
tained with 4 -enl{E. ), and A - dn(&.m).
Example 8. If y = A -sn{u&.m) is a solution to

a a3 - . Uzﬂ‘[g
V3t (L + ey (B0)
Fe
then z = A - ns( €, m) is a solution Lo
T . 2 24,2 .“25 3
D= AT (1w —a 31

Analogous examples of this type can be obtained
with A en{p& i} and A -dn{p& ,m).
Property 3. For equalion

m24

S Al AR :
Voo AT - (1 m )y +;12'\"

32y

sister solution v* = 2ns{& m). This can be easily ver-
itied just by substitution y* = Ans(.m) inta (32).
According o Example 7, : = A - ns{ &, m) satisfies

besides the solution y .. A -sn(&,m), there is another

T T 1
7= mia?. (I T mg)zg + EZ’.J' (3%

P .
and ¥* = .-z thus

. I : . me .
}__.-.;2 . _’jzﬁ'f j‘l') —(I +m2)}?+_)) . (34)
m- A=
That is to say, the equation for y* is complelely iden-
tical to that for y.
Corollary: For the equation

2.9
2, MTmE g

YIS AT )y S 39)

besides a solution y = 4 -sn{p&. m}, there is another
sister solution y* = 2ns{p& m).

Hr
Property 4. For the equation

2

Y2 =AN1—ml)+ (2m? — 1)y — Zi»‘ (36)

besides a solution v == A -cn(é L), there is another sis-

XL A ne{E ).

ter solution y* = i+
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Corollary: For the cquation

X2
e S R WY I0 P S RN S S

AT

besides the solution ¥y = A -en{pé, m), there is another

sister solution y* = E%A ne(pE. m).
Property 5. For the equation

) ; 1
) F (2 mt

12 2
; A 1
y ( A

{(38)

besides y = A -dn(&,m}, there is another sister solution

¥ = AV T —m?nd(§, m),

Corollary; For the equation

-
2—?;-*. (39

¥ = AT —m D (2 - mP )y
besides ¥y A-dn{u&,m). there is another sister solu-
tony =Av1 —mind{ué m).

All these statements can be casily checked by sub-
stituting the solutions into the respective equations.

4, EODE of the Second Kind

Considering ag = as =0and gy £ 0, a2 £ 0, a3 #£0
in {17, then we have

f el 3
¥ ¥+ arvy sy,

(40)

which may be called EQDE of the second kind.
Property 6. If v is a solution of (40), then ¢ = ‘l
satisfics '

r2

=zt ait 4

It is obviows, that (41) takes the same torm as (40}
with «| exchanged by a:. Just as we did in the previ-
ous section, this property can be demonstrated by some
exarmples.

Example 9. Equation

4(1 | mz:];u2 | duty? (42)
has asolution vy sn*(E. ), and 7 - % satisfies

Sl =amts— 41+ mz)zz — 4:.3, (43
its solution is £ = ns? (&, m).

Similar to Example 2 and Example 3, analogous ex-
amples of this type can be obtained with en® (&, mr) and
dn*(&,m).
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Property 7. If Ay, with 4 a nonzero constant, is a
solution of (40). then 7 — f satisfies
73 [£3
= Al e = A—‘ﬂ (44)

Also this property can be illustrated by examples.
Example 10. It can be proved that y = A -sn* (&, m)
is a solution to

-

5. dm- <
¥ =44y —A(1 - it +

1 (45)

by substituting it into (45). Then based on Property 7.
we have that z = A-ns(€_m) iy also a solution to the
equation
. ]
7 dmtAn— 4 + R 123, (40}

Analogous results can be found for A - en?(&,m) or
A-do’(E,m).

Property 8. For the equation

"
4= 4

¥2 =44y 4(1+m7y - — 47)

besides # solution y = A - sn?{E,m), there is another
sister solution ¥ = ﬁ;nsz(é,m),

Corollary: For the equalion
2

4utm

V2 = 4ty — 4p {1 =Py — = y ¥, (48)

besides a solution vy = A -sn* (U, m). there is another
sister solution ¥ = ;’%-_rnsz(y’:.m].

Similar to Property 4, Property 5 and their corre-
spanding corollaries, analogous resulis can de derived
for A -cnf{ué m). or A dn*(ué m).

5. EODE of the Third Kind
Considering 42 =0 and ag # 0, &y # 0, a3 # 0,
asy Z 0 in (1), then we have

Y2 aptay+ay’ | ay, (49}

which may be called EQDE of the third kind.

Applying the Jucobi elliptic function expansion
method [1, 2], it can be casily proved that (49) admits
a solution

v= Ag+Az-sn’(kE m), (503

571

where Ay. A2 and & are constants to be shown from
boundary conditions.
Property 9. For (49), besides a solution (50), there
exists another sister solution
A ¢
y=Ag+ sk m). (an
mi
Aciually, if we suppose thal ¥, = Ap+v and yp =
Ag+w, v As-so (k€ m) and w = Ay s’ (kE ) /m?,
then trom Example 10, one has

Am*
i V)

V3 = dity — 4K (1 + Tt +

i)

and

2 5 Lo 4wt
w'? = 4w — 451+ mP )t — Am W

2

(53)
That is to say. v and w satisty the same equation.

6. EODF, of the Fourth Kind

Considering «; = 0 and ap £ 0. a1 # 0, a3 # 0
g 7 0in (1), then we have

y’z =g~y + a3y3 -+ (14}-'4. (54)

which may be called EQDE of the fourth kind.
Similar to (49), the solutions of (54) are

y=Ag— A -sn{kE, m), (55}
or

v =By+ 8 cn(kE . m), {56)
or

y=Co+C - dnlkE ), (37

where Ag, Ay, By, By, Cy and () are conslants o be
determined.

Property 10. For (54), besides the sclutions (55),
(56), or (57), there exist other solutions

¥ =A()—%ns(k.§._m]._ (58}
ar
r—
v=Bo f%fz} oe(kE ). (59)
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ar

v =Cy+ v | — m2C) nd{kE ). (60)

7. Conclusion and Discussion

In this paper, some properties of the elliptic ordinary
differential equation, which can be used Lo {ind travel-
ling wave solutions of nonlinear evelution equations,
are given. Actually. lrom these properties, we can ob-
tain more nontrivial information. There are some kinds
of symmetries, such as mirror-symmetry in the graphi-
cal presentation of solutions given in Example 3. ro-
tational symmelry found in solulions in Example 5.
Of course, more solutions may not take these types
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of symmelrics. Just like solutions in Example 1, one
is bounded. the other is unbounded {(see Fig. 1). Simi-
lar behaviors can be found in Example 2. Example 8,
Example 9 and Lxample 1. However. these solutions
may take different shapes. There are also cases with
two unbounded solutions, such as the solutions given
in Example 4 and Ixample 6. All these results be help-
tul in studying solutions to nonlinear wave equations.
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