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Abstract In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two
coupled nonlinear partial differential equations are obtained.

PACS numbers: 03.65.Ge
Key words: Jacobi elliptic function, periodic wave solution, nonlinear partial differential equation

1 Introduction
In 2002, Yao and Li[1] and Liu and Liu[2] presented

a new method for finding exact travelling wave solutions
of some coupled nonlinear differential equations. How-
ever, there only some soliton-like solutions were derived
and some conditions are coarse. In this letter, by using
the Jacobi elliptic function expansion method,[3−5] we ob-
tain the periodic solutions for two coupled nonlinear par-
tial differential equations, which play an important role in
modern physics.

2 Periodic Solutions for DSW Equations
The classical Drinfel’d–Soklov–Wilson (DSW for

short) equations[6] read

ut + α1vvx = 0 , (1a)

ut + α2uvx + α3vux + βvxxx = 0 . (1b)

We seek the travelling wave solutions of Eqs. (1) in the
form

u = u(ξ) , v = v(ξ) , ξ = k(x− ct) , (2)

where k and c are wave number and wave speed, respec-
tively. Substituting Eqs. (2) into Eqs. (1), we have

−c
du

dξ
+ α1v

dv

dξ
= 0 , (3a)

−c
dv

dξ
+ α2u

dv

dξ
+ α3v

du

dξ
+ β

d3v

dξ3
= 0 . (3b)

By using the Jacobi elliptic function expansion
method,[3−5] u and v can be expressed as

u = a0 + a1 sn ξ + a2 sn2ξ , (4a)

v = b0 + b1 sn ξ (4b)

with a2
2 + b2

1 6= 0, where sn ξ is the Jacobi elliptic sine
function.[7−9]

Substituting Eqs. (4) into Eqs. (3) leads to

(−ca1 + α1b0b1) + (−2ca2 + α1b
2
1) sn ξ = 0 , (5a)

[−cb1 + α2a0b1 + α3a1b0 − βk2(1 + m2)b1]

+[α2a1b1 + α3(2a2b0 + a1b1)] sn ξ

+(α2a2b1 + 2α3a2b1 + 6βk2m2b1] sn2ξ = 0 , (5b)

with m (0 < m < 1) is the modulus.
From Eqs. (5), we have

a1 = b0 = 0 , a0 =
c + βk2(1 + m2)

α2
,

a2 = − 6βk2m2

α2 + 2α3
, b1 = ±

√
− 12βk2m2c

α1(α2 + 2α3)
. (6)

So, the periodic solutions to the classical DSW equa-
tions (1) are

u =
c + βk2(1 + m2)

α2
− 6βk2m2

α2 + 2α3
sn2ξ , (7a)

v = ±

√
− 12βk2m2c

α1(α2 + 2α3)
sn ξ . (7b)

When m → 1, equations (7) reduce to the following
solitary wave (shock wave) solutions:

u =
c + 2βk2

α2
− 6βk2

α2 + 2α3
tanh2ξ ,

v = ±

√
− 12βk2c

α1(α2 + 2α3)
tanh ξ . (8)

Similar to Eqs. (4), the ansatz solution can be taken
as

u = c0 + c1 cn ξ + c2 cn2ξ , (9a)

v = d0 + d1 cn ξ (9b)

with c2
2+d2

1 6= 0 and where cn ξ is the Jacobi elliptic cosine
function.[7−9]

Substituting Eqs. (9) into Eqs. (3) yields

c1 = d0 = 0 , c0 =
c− βk2(2m2 − 1)

α2
,
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c2 =
6βk2m2

α2 + 2α3
, d1 = ±

√
12βk2m2c

α1(α2 + 2α3)
. (10)

Then, the another periodic solutions to the classical
DSW equations (1) are

u =
c− βk2(2m2 − 1)

α2
+

6βk2m2

α2 + 2α3
cn2ξ , (11a)

v = ±

√
12βk2m2c

α1(α2 + 2α3)
cn ξ . (11b)

When m → 1, equations (11) reduce to the following
solitary wave solutions:

u =
c− βk2

α2
+

6βk2

α2 + 2α3
sech2ξ ,

v = ±

√
12βk2c

α1(α2 + 2α3)
sech ξ . (12)

The solutions (8) and (12) are the same as given in
Ref. [1].

3 Periodic Solutions for Hirota–Satsuma
Coupled KdV Equations
The Hirota–Satsuma coupled KdV equations[10,11]

reads

ut + α(uux − vwx − wvx) + βuxxx = 0 , (13a)

vt − αuvx − 2βvxxx = 0 , (13b)

wt − αuwx − 2βwxxx = 0 . (13c)

Similarly, the periodic solutions of Eqs. (13) in the
travelling wave frame,

u = u(ξ) , v = v(ξ) , w = w(ξ) ,

ξ = k(x− ct) , (14)

can be written as

u = a0 + a1 sn ξ + a2 sn2ξ ,

v = b0 + b1 sn ξ + b2 sn2ξ ,

w = c0 + c1 sn ξ + c2 sn2ξ (15)

with the constraint a2 6= 0.
Substituting Eq. (15) into Eqs. (13) leads to the fol-

lowing results

[−c + αa0 − βk2(1 + m2)]a1 − α(b0c1 + b1c0) = 0 , (16a)

αa2
1 − 2α(b0c2 + b1c1 + b2c0)

+2[−c + αa0 − 4βk2(1 + m2)]a2 = 0 , (16b)

3(αa2 + 2βk2m2)a1 − 3α(b1c2 + b2c1) = 0 , (16c)

(αa2 + 12βk2m2)a2 − 2αb2c2 = 0 , (16d)

[c + αa0 − 2βk2(1 + m2)]b1 = 0 , (16e)

[c + αa0 − 2βk2(1 + m2)]c1 = 0 , (16f)

2[c + 2αa0 − 8βk2(1 + m2)]b2 + αa1b1 = 0 , (16g)

2[c + 2αa0 − 8βk2(1 + m2)]c2 + αa1c1 = 0 , (16h)

(αa2 + 12βk2m2)b1 + 2αa1b2 = 0 , (16i)

(αa2 + 12βk2m2)c1 + 2αa1c2 = 0 , (16j)

(αa2 + 24βk2m2)b2 = 0 , (16k)

(αa2 + 24βk2m2)c2 = 0 . (16l)

For the system (16), two cases must be considered.
The first one is a1 = b1 = c1 = 0, then we have

a0 =
8βk2(1 + m2)− c

2α
, a2 = −24βk2m2

α
,

b2c2 =
144β2k4m4

α2
, b0c2 + b2c0 =

36βk2m2c

α2
. (17)

So the periodic solution to the coupled system (13) is

u =
8βk2(1 + m2)− c

2α
− 24βk2m2

α
sn2ξ ,

v = b0 + b2 sn2ξ , w = c0 + c2 sn2ξ (18)

with b0, b2, c0, and c2 satisfying the constraint (17).
When m→ 1, equation (18) reduces to

u =
16βk2 − c

2α
− 24βk2

α
tanh2ξ ,

v = b0 + b2 tanh2ξ , w = c0 + c2 tanh2 ξ . (19)

The second case is a1 = b2 = c2 = 0, from Eq. (16),
one has

a0 =
2βk2(1 + m2)− c

α
, a2 = −12βk2m2

α
,

b1c1 =
24βk2m2[c + βk2(1 + m2)]

α2
,

b0c1 + b1c0 = 0 . (20)

So another periodic solution to the coupled system (13)
is

u =
2βk2(1 + m2)− c

α
− 12βk2m2

α
sn2ξ ,

v = b0 + b1snξ , w = c0 + c1 sn ξ (21)

with b0, b1, c0, and c1 satisfying the constraint (20).
When m→ 1, equation (21) reduces to

u =
4βk2 − c

α
− 12βk2

α
tanh2ξ ,

v = b0 + b1 tanh ξ , w = c0 + c1 tanh ξ . (22)

Similarly, if the ansatz solution to the coupled system
(13) is taken as

u = d0 + d1 cn ξ + d2 cn2ξ ,

v = e0 + e1 cn ξ + e2 cn2ξ ,

w = f0 + f1 cn ξ + f2 cn2ξ (23)

with the constraint d2 6= 0, there are another two similar
periodic solutions.

The first one is

u = −8βk2(2m2 − 1) + c

2α
+

24βk2m2

α
cn2ξ ,

v = e0 + e2 cn2ξ ,

w = f0 + f2 cn2ξ (24)
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with e0, e2, f0, and f2 satisfying the constraint

e2f2 =
144β2k4m4

α2
,

e0f2 + e2f0 = −36βk2m2c

α2
. (25)

The second one is

u = −2βk2(2m2 − 1) + c

α
+

12βk2m2

α
cn2ξ ,

v = e0 + e1 cn ξ , w = f0 + f1 cn ξ (26)

with e0, e1, f0, and f1 satisfying the constraint

e1f1 =
24βk2m2[βk2(2m2 − 1)− c]

α2
,

e0f1 + e1f0 = 0 . (27)

When m→ 1, equation (26) reduces to

u = −2βk2 + c

α
+

12βk2

α
sech2ξ ,

v = e0 + e1 sech ξ ,

w = f0 + f1 sech ξ . (28)

Taking α = 3, β = −1/2, the solutions (18) and (28) are
the same as given in Ref. [1].

4 Conclusion
In this letter, we apply the Jacobi elliptic function ex-

pansion to solve two coupled nonlinear systems, and many
periodic wave solutions and shock wave or solitary wave
solutions are derived. These solutions are helpful in un-
derstanding the problems in modern physics.

References

[1] R.X. Yao and Z.B. Li, Phys. Lett. A 297 (2002) 196.

[2] C.P. Liu and X.P. Liu, Phys. Lett. A 303 (2002) 197.

[3] S.K. Liu, Z.T. Fu, S.D. Liu, and Q. Zhao, Phys. Lett. A
289 (2001) 69.

[4] Z.T. Fu, S.K. Liu, S.D. Liu, and Q. Zhao, Phys. Lett. A
290 (2001) 72.

[5] E.J. Parkes, B.R. Duffy, and P.C. Abbott, Phys. Lett. A
295 (2002) 280.

[6] R. Hirota, B. Grammaticos, and A. Ramani, J. Math.
Phys. 27 (1986) 1499.

[7] S.K. Liu and S.D. Liu, Nonlinear Equations in Physics,
Peking University Press, Beijing (2000).

[8] V. Prasolov and Y. Solovyev, Elliptic Functions and El-
liptic Integrals, American Mathematical Society, Provi-
dence, R.I. (1997).

[9] Z.X. Wang and D.R. Guo, Special Functions, World Sci-
etific, Singapore (1989).

[10] Y.T. Wu, et al., Phys. Lett. A 255 (1993) 259.

[11] E.G. Fan, Phys. Lett. A 299 (2002) 46.


