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Novel solutions to the combined dispersion equation
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In this Letter, the combined dispersion equation was solved by the sub-equation method. It is shown that
the combined dispersion equation with the special parameters can be solved and many novel solutions
will derived in terms of Jacobi elliptic functions, where some known solutions will be recovered when
the modulus arrives its limiting value.
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1. Introduction

The combined dispersion equation (CSE for short)

ut + αulux + β
(
u2)

xxx + γ uxxx = 0, (1)

where l is a positive integer and denotes the intensity of the con-
vection term, α is the parameter of the convection term, β is the
parameter of the nonlinear dispersion term and γ is the parameter
of the linear dispersion terms.

Eq. (1) connects with two important nonlinear equation for
solitary water waves. When l = 1 and γ = 0, Eq. (1) recovers the
Rosenau–Hyman equation

ut + αuux + β
(
u2)

xxx = 0, (2)

which admits compactons [1]. When l = 2 and β = 0, Eq. (1) re-
duces to the famous mKdV equation

ut + αu2ux + γ uxxx = 0. (3)

Actually, Eq. (1) can be taken as a special shallow water equa-
tion with linear and nonlinear dispersion [2], which is related to
the famous Camassa–Holm equation [3]. Or, we can take Eq. (1)
as a special general modified Camassa–Holm equation [4–6], since
they take the similar forms when we solve them in the travelling
wave frame ξ = k(x − ct).

Since CSE is a current research interest in nonlinear water
waves, in this Letter, we will show systematical results for the CSE
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(1) by using the knowledge of Jacobian elliptic functions [7–10]
and elliptic equation [11–13], where many novel solutions will be
found.

We will seek the travelling wave solution in the following frame

u = u(ξ), ξ = k(x − ct), (4)

here c is wave speed and k is wave number.
Substituting (4) into (1) yields

−c
du

dξ
+ αul du

dξ
+ βk2 d3u2

dξ3
+ γ k2 d3u

dξ3
= 0. (5)

It is obvious that Eq. (5) cannot be solved directly for all l, only
some special values of l can make Eq. (5) solvable directly. In fact,
l = 2 and l = 3 are two special cases. In the next sections, we will
show the detailed results for these two cases.

2. Solutions to CSE for l = 2

When l = 2, Eq. (5) can be rewritten as

−c
du

dξ
+ αu2 du

dξ
+ βk2 d3u2

dξ3
+ γ k2 d3u

dξ3
= 0. (6)

In order to solve Eq. (6), we will map it to the following elliptic
equation [7,8]

y′ 2 = a0 + a2 y2 + a4 y4, (7)

i.e.

y′′ = a2 y + 2a4 y3, (8)

where the prime denotes the derivatives in terms of its argument.
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The connecting bridge between (6) and (7) is the following fi-
nite expansion

u = u(ξ) =
i=n∑
i=0

bi yi, (9)

with bn �= 0.
Balancing the nonlinear term and the dispersion term in Eq. (6),

we can derive the final expansion as

u = b0 + b1 y + b2 y2, b2 �= 0. (10)

Return (10) to (6) and then we have the following algebraic
equations

−cb1 + αb2
0b1 + 2βk2(b0b1a2 + 6b1b2a0) + γ k2b1a2 = 0, (11a)

− 2cb2 + 2α
(
b0b2

1 + b2
0b2

) + 8βk2[a2
(
b2

1 + 2b0b2
) + 3b2

2a0
]

+ 8γ k2b2a2 = 0, (11b)

α
(
b3

1 + 6b0b1b2
) + βk2(12b0b1a4 + 54b1b2a2)

+ 6γ k2b1a4 = 0, (11c)

4α
(
b2

1b2 + b0b2
2

) + βk2[24a4
(
b2

1 + 2b0b2
) + 64b2

2a2
]

+ 24γ k2b2a4 = 0, (11d)

5αb1b2
2 + 120βk2b1b2a4 = 0, (11e)

2αb3
2 + 120βk2b2

2a4 = 0, (11f)

from which we have

b2 = −60βk2a4

α
, b1 = 0, b0 = γ

8β
− 20βk2a2

α
,

c = αb2
0 + 8βk2b0 + 12βk2b2a0 + 4γ k2a2. (12)

So the solution to (6) is

u = γ

8β
− 20βk2a2

α
− 60βk2a4

α
y2, (13)

with the wave speed c = αb2
0 + 8βk2b0 + 12βk2b2a0 + 4γ k2a2. Ob-

viously, when a0, a2 and a4 take different values, there will be
many different kinds of solutions, we will show some next ex-
pressed in terms of different Jacobi elliptic functions [7,8].

(1) If a0 = 1, a2 = −(1 + m2) and a4 = m2, then the solution is

u1 = γ

8β
+ 20βk2(1 + m2)

α
− 60βk2m2

α
sn2(ξ,m), (14)

where 0 � m � 1, is called modulus of Jacobi elliptic functions, see
[11,12], and sn(ξ,m) is Jacobi elliptic sine function, see [11–13].

(2) If a0 = 1 − m2, a2 = 2m2 − 1 and a4 = −m2, then the solu-
tion is

u2 = γ

8β
+ 20βk2(1 − 2m2)

α
+ 60βk2m2

α
cn2(ξ,m), (15)

where cn(ξ,m) is Jacobi elliptic cosine function, see [11–13].
(3) If a0 = 1 − m2, a2 = 2 − m2 and a4 = −1, then the solution

is

u3 = γ

8β
− 20βk2(2 − m2)

α
+ 60βk2

α
dn2(ξ,m), (16)

where dn(ξ,m) is Jacobi elliptic function of the third kind, see [11–
13].

(4) If a0 = m2, a2 = −(1 + m2) and a4 = 1, then the solution is

u4 = γ

8β
+ 20βk2(1 + m2)

α
− 60βk2

α
ns2(ξ,m), (17)

with ns(ξ,m) ≡ 1
sn(ξ,m)

.

(5) If a0 = −m2, a2 = 2m2 − 1 and a4 = 1 − m2, then the solu-
tion is

u5 = γ

8β
+ 20βk2(1 − 2m2)

α
− 60βk2(1 − m2)

α
nc2(ξ,m), (18)

with nc(ξ,m) ≡ 1
cn(ξ,m)

.

(6) If a0 = −1, a2 = 2 − m2 and a4 = m2 − 1, then the solution
is

u6 = γ

8β
− 20βk2(2 − m2)

α
+ 60βk2(1 − m2)

α
nd2(ξ,m), (19)

with nd(ξ,m) ≡ 1
dn(ξ,m)

.

(7) If a0 = 1, a2 = 2 − m2 and a4 = 1 − m2, then the solution is

u7 = γ

8β
− 20βk2(2 − m2)

α
− 60βk2(1 − m2)

α
sc2(ξ,m), (20)

with sc(ξ,m) ≡ sn(ξ,m)
cn(ξ,m)

.

(8) If a0 = 1, a2 = 2m2 − 1 and a4 = (m2 − 1)m2, then the solu-
tion is

u8 = γ

8β
− 20βk2(2m2 − 1)

α
+ 60βk2(1 − m2)m2

α
sd2(ξ,m), (21)

with sd(ξ,m) ≡ sn(ξ,m)
dn(ξ,m)

.

(9) If a0 = 1 − m2, a2 = 2 − m2 and a4 = 1, then the solution is

u9 = γ

8β
− 20βk2(2 − m2)

α
− 60βk2

α
cs2(ξ,m), (22)

with cs(ξ,m) ≡ cn(ξ,m)
sn(ξ,m)

.

(10) If a0 = 1, a2 = −(1 +m2) and a4 = m2, then the solution is

u10 = γ

8β
+ 20βk2(1 + m2)

α
− 60βk2m2

α
cd2(ξ,m), (23)

with cd(ξ,m) ≡ cn(ξ,m)
dn(ξ,m)

.

(11) If a0 = m2(m2 − 1), a2 = 2m2 − 1 and a4 = 1, then the so-
lution is

u11 = γ

8β
+ 20βk2(1 − 2m2)

α
− 60βk2

α
ds2(ξ,m), (24)

with ds(ξ,m) ≡ dn(ξ,m)
sn(ξ,m)

.

(12) If a0 = m2, a2 = −(1 +m2) and a4 = 1, then the solution is

u12 = γ

8β
+ 20βk2(1 + m2)

α
− 60βk2

α
dc2(ξ,m), (25)

with dc(ξ,m) ≡ dn(ξ,m)
cn(ξ,m)

.

(13) If a0 = (1 − m2)/4, a2 = (1 + m2)/2 and a4 = (1 − m2)/4,
then the solution is

u13 = γ

8β
− 10βk2(1 + m2)

α

− 15βk2(1 − m2)

α

[
cn(ξ,m)

1 ± sn(ξ,m)

]2

. (26)

(14) If a0 = −(1 − m2)/4, a2 = (1 + m2)/2 and a4 = −(1 −
m2)/4, then the solution is

u14 = γ

8β
− 10βk2(1 + m2)

α

+ 15βk2(1 − m2)

α

[
dn(ξ,m)

1 ± m sn(ξ,m)

]2

. (27)
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(15) If a0 = m2/4, a2 = −(2 − m2)/2 and a4 = m2/4, then the
solution is

u15 = γ

8β
+ 10βk2(2 − m2)

α
− 15βk2m2

α

[
m sn(ξ,m)

1 ± dn(ξ,m)

]2

. (28)

(16) If a0 = 1/4, a2 = (1 − 2m2)/2 and a4 = 1/4, then the solu-
tion is

u16 = γ

8β
− 10βk2(1 − 2m2)

α
− 15βk2

α

[
sn(ξ,m)

1 ± cn(ξ,m)

]2

. (29)

(17) If a0 = 1/4, a2 = −(2 − m2)/2 and a4 = m4/4, then the
solution is

u17 = γ

8β
+ 10βk2(2 − m2)

α
− 15βk2m4

α

[
sn(ξ,m)

1 ± dn(ξ,m)

]2

. (30)

There still exist many other kinds of Jacobi elliptic functions,
we do not show here. It is known that when m → 1, sn(ξ,m) →
tanh ξ , cn(ξ,m) → sech ξ , dn(ξ,m) → sech ξ and when m → 0,
sn(ξ,m) → sin ξ , cn(ξ,m) → cos ξ , so we also can derive solutions
expressed in terms of hyperbolic functions and trigonometric func-
tions. For example, when m → 1, u15 becomes

u15′ = γ

8β
+ 10βk2

α
− 15βk2

α
tanh

(
ξ

2

)
, (31)

and

u15′′ = γ

8β
+ 10βk2

α
− 15βk2

α
coth

(
ξ

2

)
. (32)

Remarks. If the mapped elliptic equation is chosen as

y′ 2 = a0 + a1 y + a2 y2 + a4 y4, (33)

then if and only if a1 is zero, Eq. (6) can be solved. So we have the
same results with the two different mapped equations, the new
mapped equation (33) will result in no new solutions to Eq. (6).

3. Solutions to CSE for l = 3

When l = 3, Eq. (5) can be rewritten as

−c
du

dξ
+ αu3 du

dξ
+ βk2 d3u2

dξ3
+ γ k2 d3u

dξ3
= 0. (34)

Similarly, the connecting bridge between (34) and (7) will let
us derive the final expansion as

u = b0 + b1 y, b1 �= 0. (35)

Return (35) to (34) and then we have the following algebraic
equations

−cb1 + αb3
0b1 + 2βk2b0b1a2 + γ k2b1a2 = 0, (36a)

3αb2
0b2

1 + 8βk2b2
1a2 = 0, (36b)

3αb0b3
1 + 12βk2b0b1a4 + 6γ k2b1a4 = 0, (36c)

αb4
1 + 24βk2b2

1a4 = 0, (36d)

from which we have

b1 = ± 3γ

10β

√
a4

a2
, b0 = γ

10β
,

c = αb3
0 + 2βk2b0a2 + γ k2a2, (37)

with the constraint
a4

> 0. (38)

a2
So the solution to (34) is

u = γ

10β
± 3γ

10β

√
a4

a2
y, (39)

with the wave speed c = αb3
0 +2βk2b0a2 +γ k2a2. Obviously, when

a0, a2 and a4 take different values and a2 and a4 satisfy the con-
straint (38), there will be many different kinds of solutions, we
will show some next expressed in terms of different Jacobi elliptic
functions [7,8].

(1) If a0 = 1 − m2, a2 = 2m2 − 1 and a4 = −m2 with m2 < 1
2 ,

then the solution is

u1 = γ

10β
± 3γ

10β

√
m2

1 − 2m2
cn(ξ,m). (40)

(2) If a0 = −m2, a2 = 2m2 − 1 and a4 = 1 − m2 with m2 > 1
2 ,

then the solution is

u2 = γ

10β
± 3γ

10β

√
1 − m2

2m2 − 1
nc(ξ,m). (41)

(3) If a0 = 1, a2 = 2 − m2 and a4 = 1 − m2, then the solution is

u3 = γ

10β
± 3γ

10β

√
1 − m2

2 − m2
sc(ξ,m). (42)

(4) If a0 = 1, a2 = 2m2 − 1 and a4 = m2(m2 − 1) with m2 < 1
2 ,

then the solution is

u4 = γ

10β
± 3γ

10β

√
m2(m2 − 1)

2m2 − 1
sd(ξ,m). (43)

(5) If a0 = 1 − m2, a2 = 2 − m2 and a4 = 1, then the solution is

u5 = γ

10β
± 3γ

10β

√
1

2 − m2
cs(ξ,m). (44)

(6) If a0 = m2(m2 − 1), a2 = 2m2 − 1 and a4 = 1 with m2 > 1
2 ,

then the solution is

u6 = γ

10β
± 3γ

10β

√
1

2m2 − 1
ds(ξ,m). (45)

(7) If a0 = (1 − m2)/4, a2 = (1 + m2)/2 and a4 = (1 − m2)/4,
then the solution is

u7 = γ

10β
± 3γ

10β

√
1 − m2

2(1 + m2)

cn(ξ,m)

1 ± sn(ξ,m)
. (46)

(8) If a0 = 1/4, a2 = (1 − 2m2)/2 and a4 = 1/4 with m2 < 1
2 ,

then the solution is

u8 = γ

10β
± 3γ

10β

√
1

2(1 − 2m2)

sn(ξ,m)

1 ± cn(ξ,m)
. (47)

Remarks. If the mapped elliptic equation is chosen as (33), Eq. (34)
can still be solved. But the new mapped equation (33) will result
in no changes to solutions of Eq. (34) except a new wave speed
c = αb3

0 + 2βk2b0a2 + 3βk2b1a1 + γ k2a2 with b0 and b1 still given
by (37).

4. Conclusion

In this Letter, we presented the process to find exact solu-
tions for the CSE with the help from the bridge connecting CSE
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to the elliptic equation and obtained some novel types of so-
lutions, these solutions may be applied to describe and/or ex-
plain some phenomena found in the nonlinear water waves,
since the model has been proposed to model nonlinear water
waves. Another result given in this Letter is that choosing an
appropriate mapping equation is of great importance in solv-
ing nonlinear equations, since the wrong chosen mapping equa-
tion may results in no solution to the solved nonlinear equa-
tions.
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