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Abstract
In this paper, two kinds of Lamé function have been listed and compared. Based on these
two Lamé functions and the Jacobi elliptic function, the perturbation method is applied to the
shallow water system, and many multi-order solutions of novel form are derived. In addition,
it is shown that different Lamé functions can exist in the first-order solutions of the nonlinear
system.

PACS number: 04.20.Jb

1. Two kinds of Lamé function

Usually, the Lamé equation [1, 2] in terms of y(x) can be
written as

d2 y

dη2
+

1

2

(
1

η
+

1

η − 1
+

1

η − h

)
dy

dη

−
µ + n(n + 1)η

4η(η − 1)(η − h)
y = 0, (1)

where
h = m−2 > 1, µ = −hλ, (2)

where λ is an eigenvalue, n is a positive integer and m (0 <

m < 1) is the modulus of the Jacobi elliptic function.
Equation (1) is a kind of Fuchs-type equation with four

regular singular points η = 0, 1, h and η = ∞; the solution
to Lamé equation (1) is known as the Lamé function. When
η takes different forms, there will be a Lamé equation
with different forms whose solutions will be different Lamé
functions. For example, if we set

η = sn2x, (3)

then Lamé equation (1) becomes

d2 y

dx2
+

[
λ − n(n + 1)m2sn2x

]
y = 0, (4)

where sn x is the Jacobi elliptic sine function with modulus m
(0 < m < 1).

For equation (4), there are different Lamé functions
expressed in closed form; for example, when n = 3, λ = 4(1 +
m2), i.e. µ = −4(1 + m−2), the Lamé function is

Lsn
3 (x) = η1/2(1 − η)1/2(1 − h−1η)1/2

= sn x cn x dn x . (5)

For n = 2, when λ = 1 + m2, the Lamé function is

Ls
2(x) = (1 − η)1/2(1 − h−1η)1/2

= cn x dn x, (6)

when λ = 1 + 4m2, the Lamé function is

Lc
2(x) = (1 − η)1/2(1 − h−1η)1/2

= sn x dn x (7)

and when λ = 4 + m2, the Lamé function is

Ld
2(x) = (1 − η)1/2(1 − h−1η)1/2

= sn x cn x . (8)

In equations (5)–(8), cn x and dn x are the Jacobi elliptic
cosine function and the Jacobi elliptic function of the third
kind [1, 2], respectively.

Could equation (1) be written in other forms and will
they have different solutions similar to those given above for
equation (4)? In fact, if we set

η = cd2 x, (9)

then Lamé equation (1) becomes

d2 y

dx2
+

[
λ − n(n + 1)m2 cd2 x

]
y = 0, (10)

where cd x ≡ cn x/dn x is another kind of Jacobi elliptic
function with modulus m (0 < m < 1).
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For equation (10), there also exist different Lamé
functions expressed in closed form; for example, when n = 3,
λ = 4(1 + m2), i.e. µ = −4(1 + m−2), the Lamé function is

Lcd
3 (x) = η1/2(1 − η)1/2(1 − h−1η)1/2

= cd x sd x nd x . (11)

This is another Lamé function different from that given in (5).
For n = 2, when λ = 1 + m2, the Lamé function is

Lcd
2 (x) = (1 − η)1/2(1 − h−1η)1/2

= sd x nd x, (12)

when λ = 1 + 4m2, the Lamé function is

Lsd
2 (x) = (1 − η)1/2(1 − h−1η)1/2

= cd x nd x (13)

and when λ = 4 + m2, the Lamé function is

Lnd
2 (x) = (1 − η)1/2(1 − h−1η)1/2

= sd x cd x . (14)

In equations (11)–(14), sd x ≡ sn x/dn x , nd x ≡ 1/dn x
are two new Jacobi elliptic functions. Lcd

2 (x), Lsd
2 (x) and

Lnd
2 (x) are three new Lamé functions different from those

given in (6), (7) and (8).
During the past three decades, nonlinear wave research

has made great progress, and a number of new methods have
been proposed to obtain exact solutions to nonlinear wave
equations. Among these methods, the homogeneous balance
method [3], the hyperbolic tangent function expansion
method [4, 5], the nonlinear transformation method [6, 7],
the trial function method [8, 9], the sine–cosine method [10],
the Jacobi elliptic function expansion method [11–13], the
auxiliary equation and mapping method [14], the exp-function
method [15] and so on have been widely applied to solve
nonlinear wave equations exactly. Furthermore, in order to
discuss the stability of these solutions, one must superimpose
a small disturbance on them and analyze the evolution of
the small disturbance [2, 16]. This is equivalent to solutions
of nonlinear evolution equations expanded as a power series
in terms of a small parameter ε, and then multi-order exact
solutions are derived. Lamé functions given by (5), (6), (7)
and (8), i.e. Lsn

3 (x) and/or Ls
2(x) and/or Lc

2(x) and/or Ld
2(x),

have been applied to solve many single nonlinear equations
to derive multi-order solutions [17]. Could Lamé functions
given by (11), (12), (13) and (14), i.e. Lcd

3 (x), Lcd
2 (x), Lsd

2 (x)

and Lnd
2 (x), be applied to solve nonlinear equations? We

will answer this question in the following sections. Since we
have listed two kinds of different Lamé functions, Lsn

3 (x),
Ls

2(x), Lc
2(x), Ld

2(x) and Lcd
3 (x), Lcd

2 (x), Lsd
2 (x), Lnd

2 (x), we
will apply these two kinds of Lamé function to the shallow
water system to illustrate the applications of Lamé functions
to nonlinear equations in order to derive different kinds of
multi-order exact solutions.

2. Shallow water system and its perturbed expansion

The generalized shallow water system reads

Ht + (Hu)x + βuxxx = 0, (15a)

ut + Hx + uux = 0. (15b)

We seek travelling wave solutions of the following form:

u = u(ξ), H = H(ξ), ξ = k(x − ct), (16)

where k and c are wave number and wave speed, respectively.

Substituting (16) into (15) yields

− cHξ + (Hu)ξ + βk2uξξξ = 0, (17a)

− cuξ + Hξ + uuξ = 0, (17b)

which can be integrated as

− cH + Hu + βk2uξξ = C1, (18a)

− cu + H + 1
2 u2

= C2, (18b)

where C1 and C2 are two integration constants. We will see
that not all integration constants can be taken to be zero.

Applying the perturbation method and setting

u = u0 + εu1 + ε2u2 + · · · , (19a)

H = H0 + εH1 + ε2 H2 + · · · , (19b)

where ε (0 < ε << 1) is a small parameter, u0, u1, u2 and
H0, H1, H2 represent the zeroth-, first- and second-order
solutions, respectively.

Substituting (19) into (18), we obtain various order
equations. For example, the zeroth-order equation (for ε0) is

− cH0 + H0u0 + βk2u0ξξ = C1, (20a)

− cu0 + H0 + 1
2 u2

0 = C2, (20b)

the first-order equation (for ε1) is

− cH1 + H0u1 + H1u0 + βk2u1ξξ = 0, (21a)

− cu1 + H1 + u0u1 = 0, (21b)

and the second-order equation (ε2) is

− cH2 + H0u2 + H1u1 + H2u0 + βk2u2ξξ = 0, (22a)

− cu2 + H2 + 1
2 u2

1 + u0u2 = 0. (22b)

For the zeroth-order equation (20), the Jacobi elliptic
function expansion method [11, 12] can be applied to solve
it. In fact, different Jacobi elliptic functions can be applied
to solve (20), and different results can be derived. In the
following, we show that different zeroth-order solutions
will allow us to have different first-order and second-order
solutions, where these solutions can be represented in terms
of different Lamé functions shown in the above sections.

3. Lsn
3 (x), Ls

2(x), Lc
2(x), Ld

2(x) and the first kind of
multi-order solution

3.1. Jacobi elliptic sine function expansion and Lamé
function solution

For the zeroth-order equation (20), the Jacobi elliptic sine
function expansion method [11, 12] can be applied to solve
it, i.e. the ansatz solution is supposed to take the following
form:

H0 = a0 + a1 sn ξ + a2 sn2 ξ, (23a)

u0 = b0 + b1 sn ξ, (23b)

2
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where the expansion coefficients a0, a1, a2 and b0, b1 can be
determined by substituting (23) into (20). Here we have

H0 = cu0−
1

2
u2

0 + C2, C1 = 0, C2 =−
c2

2
+βk2(1 + m2),

(24a)

b0 = c, b1 = ±2mk
√

β. (24b)

Thus the zeroth-order solution for the shallow water
system (15) is

H0 = βk2(1 + m2) − 2m2k2β sn2 ξ, (25a)

u0 = c ± 2mk
√

β sn ξ. (25b)

Substituting (25) and (24a) into the first-order equation
(21) yields

H1 = (c − u0)u1, (26a)

βk2 d2u1

dξ 2
+ H0u1 + (u0 − c)H1 = 0, (26b)

from which we have

d2u1

dξ 2
+

[
(1 + m2) − 6m2 sn2 ξ

]
u1 = 0. (27)

Here it is obvious that u1 in (27) takes the same form as
y in (4). Hence we can assume that u1 takes the following
form:

u1 = AsLs
2(ξ) = As cn ξdn ξ. (28)

Substituting (28) into (26a) yields

H1 = ∓2mk
√

β AsLsn
3 (ξ). (29)

Hence the final first-order solution is

H1 = ∓2mk
√

β AsLsn
3 (ξ), u1 = AsLs

2(ξ), (30)

where As is an arbitrary constant; obviously different Lamé
functions Lsn

3 (ξ) and Ls
2(ξ) exist in the same system for the

shallow water system.
In order to obtain the second-order solution of the

shallow water system, we have to substitute the zeroth-order
solution (25) and the first-order solution (30) back into the
second-order equation (22). We have

H2 = (c − u0)u2 −
1
2 u2

1, (31a)

βk2 d2u2

dξ 2
+ H0u2 + (u0 − c)H2 + H1u1 = 0, (31b)

from which we have

d2u2

dξ 2
+

[
(1 + m2)−6m2 sn2 ξ

]
u2 = ±

3m

k
√

β
A2

s sn ξ cn2 ξ dn2 ξ.

(32)
Since cn2 ξ = 1 − sn2 ξ , dn2 ξ = 1 − m2 sn2 ξ , the special

solution to (32) can be assumed to be

u2 = B1 sn ξ + B3 sn3 ξ. (33)

Substituting (33) into (32) yields

B1 = ∓
(1 + m2)A2

s

4mk
√

β
, B3 = ±

m A2
s

2k
√

β
, (34)

i.e. the second-order solution is

u2 = ∓
(1 + m2)A2

s

4mk
√

β
sn ξ ±

m A2
s

2k
√

β
sn3 ξ, (35a)

H2 = (c − u0)u2 −
1
2 u2

1, (35b)

where u0 and u1 are given by (25b) and (28).

3.2. Jacobi elliptic cosine function expansion and Lamé
function solution

For the zeroth-order equation (20), the Jacobi elliptic cosine
function expansion method [11, 12] can also be applied to
solve it; i.e. the ansatz solution is supposed to take the
following form:

H0 = a0 + a1 cn ξ + a2 cn2 ξ, (36a)

u0 = b0 + b1 cn ξ, (36b)

where the expansion coefficients a0, a1, a2 and b0, b1 can be
determined by substituting (36) into (20). Here we have

H0 = cu0 −
1

2
u2

0 + C2, C1 = 0,

C2 = −
c2

2
+ βk2(1 − 2m2), (37a)

b0 = c, b1 = ±2mk
√

−β. (37b)

Thus the zeroth-order solution for the shallow water
system (15) is

H0 = βk2(1 − 2m2) + 2m2k2β cn2 ξ, (38a)

u0 = c ± 2mk
√

−β cn ξ. (38b)

Substituting (38) and (37a) into the first-order equation
(21) yields

d2u1

dξ 2
+

[
(1 − 2m2) + 6m2 cn2 ξ

]
u1 = 0. (39)

Here it is obvious that u1 in (39) takes the same form as y
in (4). Hence we can assume that u1 takes the following form:

u1 = AcLc
2(ξ) = Ac sn ξdn ξ. (40)

Substituting (40) into (26a) yields

H1 = ∓2mk
√

−β AcLsn
3 (ξ). (41)

Hence the final first-order solution is

H1 = ∓2mk
√

β AsLsn
3 (ξ), u1 = AcLc

2(ξ), (42)

where Ac is an arbitrary constant; obviously different Lamé
functions Lsn

3 (ξ) and Lc
2(ξ) exist in the same system for the

shallow water system.
To obtain the second-order solution of the shallow water

system, we have to substitute the zeroth-order solution (38)
and the first-order solution (42) back into the second-order
equation (22). Hence we have

d2u2

dξ 2
+

[
(1 − 2m2) + 6m2 cn2 ξ

]
u2

= ∓
3m

k
√

−β
A2

c cn ξ sn2 ξ dn2 ξ. (43)

Since cn2 ξ = 1 − sn2 ξ , dn2 ξ = 1 − m2sn2 ξ , the special
solution to (43) can be assumed to be

u2 = B1 cn ξ + B3 cn3 ξ. (44)

3
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Substituting (44) into (43) yields

B1 = ±
(2m2

− 1)A2
c

4mk
√

−β
, B3 = ∓

m A2
c

2k
√

−β
, (45)

i.e. the second-order solution is

u2 = ±
(2m2

− 1)A2
c

4mk
√

−β
cn ξ ∓

m A2
c

2k
√

−β
cn3 ξ, (46a)

H2 = (c − u0)u2 −
1
2 u2

1, (46b)

where u0 and u1 are given by (38b) and (40).

3.3. Jacobi elliptic function of the third kind expansion
method and Lamé function solution

For the zeroth-order equation (20), the Jacobi elliptic function
of the third kind expansion method [11, 12] can also be
applied to solve it; i.e. the ansatz solution is supposed to take
the following form:

H0 = a0 + a1 dn ξ + a2 dn2 ξ, (47a)

u0 = b0 + b1 dn ξ, (47b)

where the expansion coefficients a0, a1, a2 and b0, b1 can be
determined by substituting (47) into (20). Here we have

H0=cu0 −
1

2
u2

0 + C2, C1=0, C2=−
c2

2
+ βk2(m2

− 2),

(48a)

b0 = c, b1 = ±2k
√

−β. (48b)

Thus the zeroth-order solution for the shallow water
system (15) is

H0 = βk2(m2
− 2) + 2k2β dn2 ξ, (49a)

u0 = c ± 2k
√

−β dn ξ. (49b)

Substituting (49) and (48a) into the first-order
equation (21) yields

d2u1

dξ 2
+

[
(m2

− 2) + 6 dn2 ξ
]

u1 = 0. (50)

Here it is obvious that u1 in (50) takes the same form as y
in (4). Hence we can assume that u1 takes the following form:

u1 = AdLd
2(ξ) = Ad sn ξ cn ξ. (51)

Substituting (51) into (26a) yields

H1 = ∓2k
√

−β AdLsn
3 (ξ). (52)

Hence the final first-order solution is

H1 = ∓2k
√

β AdLsn
3 (ξ), u1 = AdsLd

2(ξ), (53)

where Ad is an arbitrary constant; obviously different Lamé
functions Lsn

3 (ξ) and Ld
2(ξ) exist in the same system for the

shallow water system.
In order to obtain the second-order solution of the

shallow water system, we have to substitute the zeroth-order

solution (49) and the first-order solution (53) back into the
second-order equation (22). We have

d2u2

dξ 2
+

[
(m2

− 2)+6 dn2 ξ
]

u2 = ∓
3

k
√

−β
A2

d dn ξ sn2 ξ cn2 ξ.

(54)
Since cn2 ξ = 1 − sn2 ξ , dn2 ξ = 1 − m2sn2 ξ , the special

solution to (54) can be assumed to be

u2 = B1 dn ξ + B3 dn3 ξ. (55)

Substituting (55) into (54) yields

B1 = ±
(m2

− 2)A2
d

2k
√

−β
, B3 = ∓

A2
d

2k
√

−β
, (56)

i.e. the second-order solution is

u2 = ±
(m2

− 2)A2
d

2k
√

−β
dn ξ ∓

A2
d

2k
√

−β
dn3 ξ, (57a)

H2 = (c − u0)u2 −
1
2 u2

1, (57b)

where u0 and u1 are given by (49b) and (51).

4. Lcd
3 (x), Lcd

2 (x), Lsd
2 (x), Lnd

2 (x) and the second
kind of multi-order solution

4.1. cd ξ expansion and Lamé function solution

For the zeroth-order equation (20), the Jacobi elliptic function
expansion method [11, 12] can be applied to solve it; for
example, the ansatz solution can be supposed to take the
following form:

H0 = a0 + a1 cd ξ + a2 cd2 ξ, (58a)

u0 = b0 + b1 cd ξ, (58b)

where the expansion coefficients a0, a1, a2 and b0, b1 can be
determined by substituting (59) into (20). Here we have

H0=cu0 −
1

2
u2

0 + C2, C1=0, C2=−
c2

2
+ βk2(1 + m2),

(59a)

b0 = c, b1 = ±2mk
√

β. (59b)

Thus the zeroth-order solution for the shallow water
system (15) is

H0 = βk2(1 + m2) − 2m2k2β cd2 ξ, (60a)

u0 = c ± 2mk
√

β cd ξ. (60b)

Substituting (60) and (59a) into the first-order
equation (21) yields

d2u1

dξ 2
+

[
(1 + m2) − 6m2 cd2 ξ

]
u1 = 0. (61)

Here it is obvious that u1 in (61) takes the same form as y
in (10). Hence we can assume that u1 takes the following
form:

u1 = AcdLcd
2 (ξ) = Acd sd ξ nd ξ. (62)

4
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Substituting (62) into (26a) yields

H1 = ∓2mk
√

β AcdLcd
3 (ξ). (63)

Hence the final first-order solution is

H1 = ∓2mk
√

β AcdLcd
3 (ξ), u1 = AcdLcd

2 (ξ), (64)

where Acd is an arbitrary constant; obviously different Lamé
functions Lcd

3 (ξ) and Lcd
2 (ξ) exist in the same system for the

shallow water system.
In order to obtain the second-order solution of the

shallow water system, we have to substitute the zeroth-order
solution (60) and the first-order solution (64) back into the
second-order equation (22). We have

H2 = (c − u0)u2 −
1
2 u2

1, (65a)

βk2 d2u2

dξ 2
+ H0u2 + (u0 − c)H2 + H1u1 = 0, (65b)

from which we have

d2u2

dξ 2
+

[
(1 + m2) − 6m2 cd2 ξ

]
u2

= ±
3m

k
√

β
A2

cd cd ξ sd2 ξnd2 ξ. (66)

The special solution to (66) can be assumed to be

u2 = B1 cd ξ + B3 cd3 ξ. (67)

Substituting (67) into (66) yields

B1 = ∓
(1 + m2)A2

cd

4m(1 − m2)2k
√

β
, B3 = ±

m A2
cd

2(1 − m2)2k
√

β
,

(68)
i.e. the second-order solution is

u2 = ∓
(1 + m2)A2

cd

4m(1 − m2)2k
√

β
cd ξ ±

m A2
cd

2(1 − m2)2k
√

β
cd3 ξ,

(69a)

H2 = (c − u0)u2 −
1
2 u2

1, (69b)

where u0 and u1 are given by (60b) and (62).

4.2. sd ξ expansion and Lamé function solution

For the zeroth-order equation (20), the ansatz solution can also
be assumed to take the following form:

H0 = a0 + a1 sd ξ + a2 sd2 ξ, (70a)

u0 = b0 + b1 sd ξ, (70b)

where the expansion coefficients a0, a1, a2 and b0, b1 can be
determined by substituting (70) into (20). Here we have

H0 = cu0 −
1

2
u2

0 + C2, C1 = 0,

C2 = −
c2

2
+ βk2(1 − 2m2), (71a)

b0 = c, b1 = ±2mk
√

−β(1 − m2). (71b)

Thus the zeroth-order solution for the shallow water
system (15) is

H0 = βk2(1 − 2m2) + 2m2(1 − m2)k2β sd2 ξ, (72a)

u0 = c ± 2mk
√

−β(1 − m2) sd ξ. (72b)

Substituting (72) and (71a) into the first-order equation
(21) yields

d2u1

dξ 2
+

[
(1 − 2m2) + 6m2(1 − m2)sd2 ξ

]
u1 = 0. (73)

Here it is obvious that u1 in (73) takes the same form as y
in (10). Hence we can assume that u1 takes the following
form:

u1 = AsdLsd
2 (ξ) = Asd cd ξ nd ξ. (74)

Substituting (74) into (26a) yields

H1 = ∓2mk
√

−β(1 − m2)AsdLcd
3 (ξ). (75)

Hence the final first-order solution is

H1 = ∓2mk
√

−β(1 − m2)AsdLcd
3 (ξ), u1 = AsdLsd

2 (ξ),

(76)
where Asd is an arbitrary constant; obviously different Lamé
functions Lcd

3 (ξ) and Lsd
2 (ξ) exist in the same system for the

shallow water system.
In order to obtain the second-order solution of the

shallow water system, we have to substitute the zeroth-order
solution (72) and the first-order solution (76) back into the
second-order equation (22). We have

d2u2

dξ 2
+

[
(1 − 2m2) + 6m2(1 − m2)sd2 ξ

]
u2

= ∓
3m

√
1 − m2

k
√

−β
A2

sd sd ξcd2 ξ nd2 ξ. (77)

The special solution to (77) can be assumed to be

u2 = B1 sd ξ + B3 sd3 ξ. (78)

Substituting (78) into (77) yields

B1 = ±
(2m2

− 1)A2
sd

4mk
√

−β(1 − m2)
, B3 = ∓

m
√

1 − m2 A2
sd

2k
√

−β
,

(79)
i.e. the second-order solution is

u2 = ±
(2m2

− 1)A2
sd

4mk
√

−β(1 − m2)
sd ξ ∓

m
√

1 − m2 A2
sd

2k
√

−β
sd3 ξ, (80a)

H2 = (c − u0)u2 −
1
2 u2

1, (80b)

where u0 and u1 are given by (72b) and (74).

4.3. nd ξ expansion and Lamé function solution

For the zeroth-order equation (20), the ansatz solution can also
be assumed to take the following form:

H0 = a0 + a1 nd ξ + a2 nd2 ξ, (81a)

u0 = b0 + b1 nd ξ, (81b)

5
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where the expansion coefficients a0, a1, a2 and b0, b1 can be
determined by substituting (81) into (20). Here we have

H0=cu0 −
1

2
u2

0 + C2, C1=0, C2=−
c2

2
+ βk2(m2

− 2),

(82a)

b0 = c, b1 = ±2k
√

−β(1 − m2). (82b)

Thus the zeroth-order solution for the shallow water
system (15) is

H0 = βk2(m2
− 2) + 2k2β(1 − m2)nd2 ξ, (83a)

u0 = c ± 2k
√

−β(1 − m2)nd ξ. (83b)

Substituting (83) and (82a) into the first-order equation
(21) yields

d2u1

dξ 2
+

[
(m2

− 2) + 6(1 − m2)nd2 ξ
]

u1 = 0. (84)

Here it is obvious that u1 in (84) takes the same form as y
in (10). Hence we can assume that u1 takes the following
form:

u1 = AndLnd
2 (ξ) = And cd ξ sd ξ. (85)

Substituting (85) into (26a) yields

H1 = ∓2k
√

−β(1 − m2)AndLcd
3 (ξ). (86)

Hence the final first-order solution is

H1 = ∓2k
√

−β(1 − m2)AndLcd
3 (ξ), u1 = AndLnd

2 (ξ),

(87)
where And is an arbitrary constant; obviously different Lamé
functions Lcd

3 (ξ) and Lnd
2 (ξ) exist in the same system for the

shallow water system.
In order to obtain the second-order solution of the

shallow water system, we have to substitute the zeroth-order
solution (83) and the first-order solution (87) back into the
second-order equation (22). We have

d2u2

dξ 2
+

[
(m2

− 2) + 6(1 − m2) nd2ξ
]

u2

= ∓
3
√

1 − m2

k
√

−β
A2

nd nd ξ cd2 ξ nd2 ξ. (88)

The special solution to (88) can be assumed to be

u2 = B1 nd ξ + B3 nd3 ξ. (89)

Substituting (89) into (88) yields

B1 = ±
(2 − m2)A2

nd

4m4k
√

−β(1 − m2)
, B3 = ∓

√
1 − m2 A2

nd

2m4k
√

−β
, (90)

i.e. the second-order solution is

u2 = ±
(2 − m2)A2

nd

4m4k
√

−β(1 − m2)
nd ξ ∓

√
1 − m2 A2

nd

2m4k
√

−β
nd3 ξ, (91a)

H2 = (c − u0)u2 −
1
2 u2

1, (91b)

where u0 and u1 are given by (83b) and (85).

5. Conclusion and discussion

In this paper, two kinds of Lamé function are reported and
applied to solve nonlinear equations, where the shallow water
system is taken as an example to illustrate the applications
of Lamé functions to nonlinear equations to derive two kinds
of multi-order solutions when the perturbation method is
involved. The results obtained in this paper are very important
for the nonlinear instability of nonlinear coherent structures
of nonlinear equations. Additionally, the method and results
given in this paper can be easily applied to other nonlinear
systems, too.

Acknowledgments

We acknowledge support from the National Basic Research
program of China (grants 2006CB403600 and 2005CB
42204), National Natural Science Foundation of China
(No. 90511009) and CAS Project (KZCX2-YW-Q11-04).

References

[1] Wang Z X and Guo D R 1989 Special Functions (Singapore:
World Scientific)

[2] Liu S K and Liu S D 2000 Nonlinear Equations in Physics
(Beijing: Peking University Press)

[3] Wang M L 1995 Phys. Lett. A 199 169–72
[4] Fan E G 2000 Phys. Lett. A 277 212–8
[5] Wazwaz A M 2006 Physica D 213 147
[6] Hirota R 1973 J. Math. Phys. 14 810–14
[7] Otwinowski M, Paul R and Laidlaw W G 1988 Phys. Lett.

A 128 483–7
[8] Kudryashov N A 1990 Phys. Lett. A 147 287–91
[9] Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Appl. Math. Mech.

22 326–31
[10] Yan C T 1996 Phys. Lett. A 224 77–84
[11] Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Phys. Lett. A 289

69–74
[12] Fu Z T, Liu S K, Liu S D and Zhao Q 2001 Phys. Lett. A 290

72–6
[13] Dou F Q et al 2006 Commun. Theor. Phys. 45 1063
[14] Liu X P and Liu C P 2009 Chaos Solitons Fractals 39 1915–19
[15] He J H and Wu X H 2006 Chaos Solitons Fractals 30 700–6
[16] Nayfeh A H 1973 Perturbation Methods (New York: Wiley)
[17] Liu S K, Fu Z T, Liu S D and Wang Z G 2004 Chaos Solitons

Fractals 19 795–801

6

http://dx.doi.org/10.1016/0375-9601(95)00092-H
http://dx.doi.org/10.1016/S0375-9601(00)00725-8
http://dx.doi.org/10.1016/j.physd.2005.09.018
http://dx.doi.org/10.1063/1.1666400
http://dx.doi.org/10.1016/0375-9601(88)90880-8
http://dx.doi.org/10.1016/0375-9601(90)90449-X
http://dx.doi.org/10.1023/A:1015514721870
http://dx.doi.org/10.1016/S0375-9601(96)00770-0
http://dx.doi.org/10.1016/S0375-9601(01)00580-1
http://dx.doi.org/10.1016/S0375-9601(01)00580-1
http://dx.doi.org/10.1016/S0375-9601(01)00644-2
http://dx.doi.org/10.1016/S0375-9601(01)00644-2
http://dx.doi.org/10.1088/0253-6102/45/6/021
http://dx.doi.org/10.1016/j.chaos.2007.06.093
http://dx.doi.org/10.1016/j.chaos.2006.03.020
http://dx.doi.org/10.1016/S0960-0779(03)00208-X

	1. Two kinds of Lame function
	2. Shallow water system and its perturbed expansion
	3. L3sn(x), Ls2(x), Lc2(x), Ld2(x) and the first kind of multi-order solution
	3.1. Jacobi elliptic sine function expansion and Lame function solution
	3.2. Jacobi elliptic cosine function expansion and Lame function solution
	3.3. Jacobi elliptic function of the third kind expansion method and Lame function solution

	4. L3cd(x), Lcd2(x), Lsd2(x), Lnd2(x) and the second kind of multi-order solution
	4.1. cd\xi expansion and Lame function solution
	4.2. sd\xi expansion and Lame function solution
	4.3. nd\xi expansion and Lame function solution

	5. Conclusion and discussion
	Acknowledgments
	References

