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a b s t r a c t 

Ramp-like structures in various atmospheric surface layer time series have been long stud- 

ied, but the presence of motifs with the finer scale embedded within larger scale ramp-like 

structures has largely been overlooked in the reported literature. Here a novel, objective 

and well-adapted methodology, the ordinal pattern analysis, is adopted to study the finer- 

scaled motifs in atmospheric boundary-layer (ABL) time series. The studies show that the 

motifs represented by different ordinal patterns take clustering properties and 6 domi- 

nated motifs out of the whole 24 motifs account for about 45% of the time series under 

particular scales, which indicates the higher contribution of motifs with the finer scale to 

the series. Further studies indicate that motif statistics are similar for both stable condi- 

tions and unstable conditions at larger scales, but large discrepancies are found at smaller 

scales, and the frequencies of motifs “1234” and/or “4321” are a bit higher under stable 

conditions than unstable conditions. Under stable conditions, there are great changes for 

the occurrence frequencies of motifs “1234” and “4321”, where the occurrence frequen- 

cies of motif “1234” decrease from nearly 24% to 4.5% with the scale factor increasing, and 

the occurrence frequencies of motif “4321” change nonlinearly with the scale increasing. 

These great differences of dominated motifs change with scale can be taken as an indica- 

tor to quantify the flow structure changes under different stability conditions, and motif 

entropy can be defined just by only 6 dominated motifs to quantify this time-scale inde- 

pendent property of the motifs. All these results suggest that the defined scale of motifs 

with the finer scale should be carefully taken into consideration in the interpretation of 

turbulence coherent structures. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

1. Introduction 

Simple visual inspections of different kinds of atmosphere boundary layer (ABL) time series reveal that marked structures

appear on multiple time scales, from the smallest turbulence scales up to several days [1] . That’s because there are many

different physical processes with abrupt nature over a broad range of scales in the atmosphere, which force, modify and

coexist with the ABL turbulence [2–4] . One of the well-studied marked structures in various ABL time series is the ramp-like

structures, in which a slow, nearly steady increase or decrease is followed by a relatively rapid change back to a base-line
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level [5–7] . They are ubiquitous at varied scales in series (i.e., smaller ramps and spikes are embedded in larger ramps), and

significantly contribute to the forming of flow properties [8] , such as generation of smaller scale turbulence and transport

of scalars [1,4] . However, the presence of motifs with the finer scale, which are embedded within larger scale ramp-like

structures, has largely been overlooked in the reported literature, although they can readily be perceived in turbulent traces

[9] . What’s more, relatively large uncertainties have been reported in the determinations of ramp-like structure duration

and separation times in various ABL series [8] . 

Ramp-like structures in various atmospheric surface layer time series have been long studied by scientists using different

techniques [8,10] , which indicates that identifying ramp-like coherent structures in the surface layer is still a challenge

task. Taylor [10] was the first one to observe and comment on the ramp features in a study of temperature at several

heights in the atmospheric boundary layer. Since Taylor’s seminal work, ramp-like coherent structures have been studied

and detected in time series through different conditional sampling techniques, such as intermittency function [11] , variable

interval time average [12–14] , multi-level detection scheme [15] , quadrant analysis [16,17] , and wavelet transform [18–23] .

Collineau [18] used wavelet transform to extract information on turbulence structure from time series of wind velocities and

scalars for various applications. Hagelberg [19] illustrated the dependence of the coherent structure detection mechanism

on the choice of analyzing wavelet, demonstrating that particular anti-symmetric wavelets are better suited to detecting

zones of concentrated shear. The wavelet transform has also been used to detect the time scales of coherent structures

[20] and to study their effects on the dynamics of turbulent transport processes [21,22] . The structure function with varied

time lags provide another possibility for identifying the characteristic duration and amplitude of the ramps [8,24–27] . Using

structure function analysis, Calif and Schmitt [27] showed that the atmospheric wind speed and the aggregated power

output from a wind farm are intermittent and multi-fractal over a wide range of scales. However, there is considerable

disagreement among these results concerning the definition of the ramp-like structures’ boundaries. Yuan and Mokhtar

[28] applied several conditional sampling methods to wind tunnel turbulent data and arrived at the conclusion that no

two methods detect exactly the same event ensemble, and some methods even detect different parts of the same event

sometimes. Especially, it should be pointed out that many ramp identification procedures are evaluated mainly by subjective

thresholds and visual inspection of the time series [28] , but this may overlook motifs of finer scale that are not readily

identified due to these methods’ limitations [8] . 

The limitations of the above mentioned methods are due to their dependence on the selection criteria, as for wavelet

analysis, its processing is computational time consuming [20,23] and even impossible since the chosen wavelet shapes are

different from the turbulent ramp structures [8] . Therefore, some objective and well-adapted techniques should be used to

overcome these limitations in order to better characterize and understand the scale-dependent structures. The recent devel-

opment of nonlinear methods in time series analysis makes it possible to reveal new discoveries. The ordinal pattern analysis

[29] is such kind of methods that has been widely used in various fields of science [30–35] , such as global climate change

[31,32] , vertical wind velocity [35] and so on. One of benefits of this method is its invariance with respect to nonlinear

monotonous transformations [29] . It is simply based on comparing values in the time-series to construct “ordinal patterns”,

which represent different motifs of the scale-dependent structures in time series. Using multi-scaled ordinal pattern anal-

ysis, no restriction is made on particular time scales, unlike that in the structure function analysis for a ramp model with

two scales, which respectively represent the smaller size non-flux-bearing turbulence and the larger the main flux-bearing

eddies [8] . Recently, various nonlinear time series models have also found a widespread application in many practical sci-

ences [36–52] successfully, such as monthly rainfall forecast in water resources management [47] , optimization of irrigation

efficiency in agricultural [4 8,4 9] , and evapotranspiration computation under different weather or climate conditions [50–52] ,

just list some among them [36–52] . Herein, based on the symbolic nonlinear time series method, the time-scale dependent

property of motifs will be well studied within the research of the atmospheric surface-layer turbulence. 

The purpose of this study is: (1) to identify and more importantly quantify the dependence of motifs with the finer

scale in surface-layer vertical wind fluctuations on time scale and stratification stability; (2) to adopt a novel, objective and

well-adapted methodology, the ordinal pattern analysis, to study of motifs with the finer scales in ABL research. The key

contributions of this paper are: (1) for the first time, the symbolic nonlinear time series method based on comparing neigh-

bor values is used to identify and quantify the scale-dependent motifs in atmospheric surface layer; (2) the studies indicate

that motif statistics are similar for both stable conditions and unstable conditions at larger scales, but large discrepancies

are found at smaller scales, and the frequencies of motifs “1234” and/or “4321” are a bit higher under stable conditions than

unstable conditions; (3) measures from only some dominated motifs can present the flow changes of the whole series; (4) a

detailed and better understanding of the surface-layer turbulence structure will be beneficial to simulate physical processes

of boundary layer in numerical model, such as air pollution diffusion processes and wind power prediction. 

2. Data and methods 

2.1. Data 

Atmospheric boundary-layer turbulence records used here are collected during the field experiment in Huaihe River Basin

from 9 to 22 June 1998. The observation site is located on the western edge of a large paddy field. A three-dimensional

sonic anemometer (SAT-211/3 K, sampling rate 10 Hz, located 4 m above ground) has been used to measure wind velocity

components and temperature, and more detailed information can be found in the reported literatures [20,35,53–56] . This
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Table 1 

Notations used through the proposed methodology. 

〈 x 〉 the time averaging of a measured variable x 

x ′ the deviation from the mean of a measured variable x 

π the permutation 

# the number (frequency) occurrences of the permutation π

P the permutation probability distribution 

PE s the permutation entropy 

ME s 1 the motif entropy for 6 dominated motifs 

ME s 2 the motif entropy for residual 18 motifs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

data set has been widely studied to analyze the characteristics of turbulence in the ABL, and some nonlinear features have

been derived [54–56] . 

In order to differentiate the flow changes in the ABL, two broad stratification stability categories are considered

herein: unstable stratification conditions ( z / L < −0 . 1 ) and stable stratification conditions (z/L > 0.1), where z = z m 

− d , z m 

is the measurement height, d is the displacement height and L = −u 

3 ∗〈 T 〉 / κg 〈 w 

′ T ′ 〉 is the Obukhov length [57] , where

u ∗ = [ 〈 u 

′ w 

′ 〉 2 + 〈 v ′ w 

′ 〉 2 ] 1 / 4 is the friction velocity, T is temperature, κ( = 0 . 4 ) is the von Karman constant, and g is the ac-

celeration due to gravity. There are 24 vertical velocity time series selected for research where each has 40,0 0 0 sampling

points, and 12 of them are under unstable stratification conditions while the other 12 are under unstable stratification con-

ditions. We show the ensemble-averaged statistical results with its unit standard deviation as error bars from 12 samples

for each group. 

Herein the authors mainly focus on the vertical components of wind velocity w and the method is suitable for latitude

and longitude wind velocity ( u and v ), since there is sufficient evidence indicating that the vertical wind shear is the major

factor in the generation of coherent structures in the surface layer [5,58,59] . 

2.2. Methods 

It is very convenient to represent time series symbolically by means of ordinal patterns, which is carried out by com-

paring neighboring values of the original series [30] and one can numerically break equalities by adding small random

perturbations if some equal neighboring values exist in series [60] , since equalities in the input signal can lead to false

conclusions in the studies [61] . 

For a given series { x t } t=1 , 2 ,.. N and an embedding dimension D > 1, the ordinal pattern of order D is given by 

( s ) = 

(
x s −( D −1 ) , x s −( D −2 ) , . . . x s −1 , x s 

)
(1) 

with s = D , D + 1 , . . . , N . 

The permutation π = ( r 0 , r 1 , . . . , r D −1 ) for each of these ( N − D + 1 ) vectors of ( 0 , 1 , . . . , D − 1 ) is defined by 

x s −r D −1 
≤ x s −r D −2 

≤ . . . ≤ x s −r 1 ≤ x s −r 0 (2) 

For all D! possible permutations of π , the probability distribution p( π ) is given by 

p ( π) = 

# { s | s ≤ N − D + 1 ; ( s ) has type π} 
N − D + 1 

(3) 

with the symbol # stands for the occurrence frequency of the permutation π . Notations used in this paper are summarized

in Table 1 . 

In fact, the constraint D! � N must be fulfilled to obtain a reliable statistics, so Bandt and Pompe recommended D =
3 , 4 , . . . , 7 for practical purposes [60] and in this paper D = 4 has been fixed (Actually, the value of D, say 3 or 5, will not

change the conclusions given in this paper, figures are not shown here). Table 2 depicts all 24 ordinal patterns (24 different

motifs) of length D = 4 gathered in groups, and the number after each motif in the end of the line denotes ordinal pattern

index used in Figs. 3 and 4 . What’s more, examples of motif “4123” are showed in Fig. 1 (g). 

It should be noted that ramp-like structures are closely related to the particular motif occurrence frequency, such as

“1234” and “4321”, since the mean of the series stays nearly unchanged. The high occurrence frequencies of “1234” and

other patterns with increasing trend indicate in principle that the motifs with a gradual rise followed by a sudden fall cover

a great part in the series, while the inverted motifs with a gradual fall followed by a sudden rise account for a comparatively

great proportion if the motif “4321” and other motifs with decreasing trend occur more frequently. 

In order to identify the dependence of motifs on time scales and to quantify the multi-scale features in the atmospheric

turbulent motions, the time series are suitably block averaged [1] under different time windows: T s = 2 h with the scale

factor h = 0 , 1 , . . . , 9 . This procedure is very different from the authors’ previous reported work [35] , in which the scale

factor is used on the first order structure function, indicating vertical wind velocity increments under different time lags

(the lag or time delay method [62,63] can also work well in this direction as block average, similar results will be reached

quantitatively). Herein it physically corresponds to multiples of the sampling time of the given time series, in order to

show the scale-dependent properties of different motifs. Therefore, the sampling rate of 10 Hz enables the minimum ordinal
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Table 2 

Motifs of length D = 4 gathered in groups, the number after each motif in the last 

line denotes pattern index used in Fig. 3 . Particularly, the motifs in bold font are 

mainly discussed here for better understanding. 

 

 

 

 

 

 

 

 

 

 

 

pattern time scale of 0.4 s, with the subsequent scales distributed as follows: 0.8 s, 1.6 s, 3.2 s, 6.4 s, 12.8 s, 25.6 s, 51.2 s, as

shown in Fig. 1 . 

The scale-dependent statistical properties of ordinal patterns can be captured by the permutation entropy [60] , which is

the normalized entropy of the probabilities of different ordinal patterns, 

P E s [ P ] = 

−∑ D! 
π=1 p ( π) log [ p ( π) ] 

log D ! 
(4)

Naturally, 0 ≤ PE s [ P ] ≤ 1, where the upper bound P E s [ P ] = 1 occurs for a completely random process, in which all D!

possible permutations are equal-probable. PE s [P] will be smaller than one if the time series exhibits some kind of ordering

dynamics. The parameter D determines the number of accessible motifs, which plays an important role in the estimation of

the permutation probability distribution P and the corresponding permutation entropy PE s [ P ] [64] . 

Since 6 dominated motifs out of the whole D! = 24 motifs show marked time-dependent properties than others (see

Fig. 3 and Fig. 4 .), herein we introduce motif entropy ( ME ) to quantify these differences. Com paring with PE , the ME s 1 only

takes 6 dominated motifs into consideration and ME s 2 the residual 18 motifs, 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

M E s 1 [ P ] = 

−∑ 

π=1 , 2 , 7 , 18 , 23 , 24 p ( π) log [ p ( π) ] 

log D ! 

M E s 2 [ P ] = 

−∑ 

π � =1 , 2 , 7 , 18 , 23 , 24 p ( π) log [ p ( π) ] 

log D ! 

(5)

where π = 1 , 2 , 7 , 18 , 23 , 24 is the 6 dominated ordinal pattern index in Table 2 . Similarly, 0 ≤ M E s 1 [ P ] + M E s 2 [ P ] ≤ 1 , where

the theoretical bound M E s 1 [ P ] = 0 . 25 and M E s 2 [ P ] = 0 . 75 occur for a completely random process with all 24 possible motifs

are equal-probable. 
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Fig. 1. The time series of vertical velocity with motifs under different scale factors: (a) h = 0 , T s = 0 . 4 s; (b) h = 1 , T s = 0 . 8 s; (c) h = 2 , T s = 1 . 6 s; (d) h = 3 , 

T s = 3 . 2 s; (e) h = 4 , T s = 6 . 4 s; (f) h = 5 , T s = 12 . 8 s; (g) h = 6 , T s = 25 . 6 s; (h) h = 7 , T s = 51 . 2 s; Examples of motif “4123” and “4231" are showed in Fig. 

1(g) and Fig. 1(h). 

 

 

 

 

 

 

 

 

 

 

3. Results 

3.1. Ordinal patterns under different time scales 

Fig. 1 shows ordinal patterns under different time scales. When the scale factor is smaller (the block window is smaller),

the symbolized series will still preserve the basic feature from the original measurements, see Fig. 1 (a) and (b). However

with the block window increasing, most of detailed large fluctuations will be smoothed off and the large scale structures

will be weakened, see Fig. 1 (e) and (f). At last, larger scale effects from the dominated motifs are eliminated since the

ever changing occurrence frequencies of different motifs are nearly unchanged at scales larger than 51.2 s, see Fig. 1 (h).

Consequently, different time scales smaller than 1 minute are considered by changing the scale factor of the symbolic re-

constructions. One of the marked features here in these time series is the emergence of ramp-like structures, such as, a

rapid decrease is followed by a relatively slow change back to a base-line level, see motif “4123” in Fig. 1 (g). The changes in

frequencies of different ramp-like structures are not homogeneous, however, they change gradually with time scales. 

Simple visual inspections of vertical wind velocity series reveal that motifs appear on a large range of time scales. Fig. 2

shows the randomly chosen examples on two different scales. Both vertical wind velocity series possess 30 ordinal patterns
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Fig. 2. For visual identification, vertical velocity time series segments under different scale factors, but with equal number of data points or motifs: (a) 

h = 0 , T s = 0 . 4 s; (b) h = 7 , T s = 51 . 2 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( D = 4 ) measured at the same location, but on two different time scales. Though particular motifs account for a greater

proportion at smaller time scales in Fig. 2 (a), an untrained eye cannot distinguish between the motifs on different scales. 

3.2. Occurrences of ordinal patterns 

In order to better characterize the difference, the occurrence frequency of all 24 motifs with D = 4 is calculated under

different time scales, see Fig. 3 . First of all, it reveals a clustered organization of the probabilities: motifs “1234” and “4321”

occur with nearly similar probability, while motifs “1243", “2134", “3421" and “4312” have the similar occurrence frequency,

and so on. Secondly, the probabilities of the same group of motifs present the same revolution with changing time scale. 

At the lower level of block window (such as the original measurements h = 0 or h = 1 ), there are marked different be-

haviors in vertical wind velocity series between the stable and unstable stratifications, the occurrence frequency of motifs

“1234” and “4321” is symmetric on the unstable stratification, but asymmetric on the stable stratification with larger amount

(16%) of motif “1234” and smaller amount (8%) of motif “4321”, see Fig. 3 (a). As the block window increases, the observed

difference between the stable and unstable stratifications will be weakened, just like what is shown in Fig. 3 (b), with scale

factor h = 2 , the occurrence frequency of motifs “1234” and “4321” is all nearly 12%, while the value is 6% for motifs “1243”,

“2134”, “3421” and “4312”, and all the above 6 motifs out of the whole 24 motifs account for about 45% of the time series.

However, the occurrence frequency of motifs “2413” and “3142” is smaller than 2%, which are the smallest ones. The oc-

currence frequency of motifs “1234”, “1243”, “2134”, “3421”, “4312” and “4321” are much higher than others under smaller

scale factors (see, h = 1 , 2 , 3 ), which is an indicator that the following two kinds of motifs are in majority[23]: (i) a gradual

rise is followed by a sudden fall or (ii) the pattern is inverted and a sudden rise is followed by a gradual fall. It has been

recognized that such kind of downdrafts (or sweeps) and updrafts (or ejections) are the primary constitutive motions of

such ramp-like patterns in planetary boundary-layer turbulence [65] . 

With the scale factor increasing, the occurrence frequencies of different motifs gradually change, see Fig. 3 (c)–(f). With

the scales increasing, the motifs with higher occurrence frequencies at scale h = 1 become less, the others occur more. When

the scale factor reaches h = 7 as shown in Fig. 3 (f), the occurrence frequency is nearly the same for all 24 motifs, which

is 4.17% as found in white noise series without any preferred motif at any scales. It has also been found that steep edges

of shapes weakens with increasing scale [1] , which seems to be predominantly related to downward transport of heat and

momentum. Here our results are consistent with these previous studies [23,35,65] . 

At larger scales (see h = 7 ), the above results are similar for both stable conditions and unstable conditions. However,

large discrepancies are found at smaller scales (see h = 3 , 4 ), and the frequencies of motifs “1234” and “4321” are a bit higher

under stable conditions than under unstable conditions. It means that the sweeps and ejections are much common in stable

conditions. Our results coincide with the conclusion that coherent structures occur more often under stable conditions than

for unstable conditions but with smaller length scales [23] . The stability dependence of the motif frequency or the coherent

structure duration times emphasize the role of stratification on the formation of coherent eddies. 
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Fig. 3. The occurrence frequency of 24 motifs under different scale factors: (a) h = 1 ; (b) h = 2 ; (c) h = 3 ; (d) h = 4 ; (e) h = 5 ; (f) h = 7 ; the dash line 

denotes the averaged frequency 4.17% for each motif. 

 

 

 

 

 

Fig. 4 shows the changing occurrence frequency of typical motifs with varied scale factor h in vertical velocity time

series under stable stratification condition ( Fig. 4 (a)) and unstable stratification condition ( Fig. 4 (b)). For both stable and

unstable conditions, first of all, it can be seen that at the same scale factor, the motifs show clustering properties as shown

in Fig. 3 . Secondly, with the scale increasing, the frequencies of all motifs tend toward a stable value around 4.17% as in

white noise series. Thirdly, the time scale at which the frequencies of different motifs converge to their constant values is

about h = 7 , T s = 51 . 2 s. At last and most importantly, there are great changes for the occurrence frequencies of motifs “1234”
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Fig. 4. The changing occurrence frequency of typical motifs in vertical velocity time series with different scale factor h . (a) under stable conditions, (b) 

under unstable conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and “4321”. The occurrence frequencies of motif “1234” decrease from nearly 24% to 4.5% under stable conditions with the

scale factor increasing, while nearly 16% to 5% under unstable conditions. The occurrence frequencies of motif “4321” change

nonlinearly with the increasing scale factor under stable conditions, while nearly unchanged at smaller scales ( h ≤ 2), and

decrease linearly at larger scales under unstable conditions. These great differences of these dominated motifs between

stable and unstable conditions can be taken to define a new indicator to differentiate and quantify the flow changes under

different conditions. 

3.3. Entropy analysis and quantification of organization degree 

The above differences between varied time scales and the changing occurrence frequencies of different motifs are more

descriptive or qualitative, in order to deeply understand their dependency on time scales, more quantitative results are

required. Shannon entropy ( SE ) has been used to quantify the organization of atmospheric turbulent eddy motion by Wesson

et al. [57] . What is more, PE provides other parameters similar to SE that can quantify the organization degree of a given

time series [29] and can efficiently identify the characteristic time scales of the relevant physical system [35,66] . 

The results shown in Fig. 4 indicate that the great changes of motif occurrence with scales only happen for some dom-

inated ones, and these suggest that quantifying the organization of atmospheric turbulent eddy motion may not require all

the patterns just as SE or PE . Applying the motif entropy ( ME ) defined in Eq. (5) , the flow features under different stability

conditions are quantitatively shown in Fig. 5 (a), where only 6 dominated motifs have been included in the calculations of

ME s1 . Indeed, marked differences can be found between stable and unstable conditions. At the same time, the prominent

feature for both cases is that the behavior of ME s1 is nearly symmetrical about a horizontal line to that of ME s2 . Firstly, with

scale factor increasing, both ME and ME tend to their saturation levels, but at larger scales ( h ≥ 2), the vertical wind ve-
s1 s2 
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Fig. 5. The permutation entropy changing with time scale for vertical velocity series under stable and unstable conditions, as well as the shuffled time 

series. (a) the motif entropy, (b) Comparison between PE s and 1 − M E s 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

locities under unstable condition are much closer to the homogenous states, where the occurrence frequency of each motif

is equal. Secondly, ME s1 and ME s2 under unstable conditions will reach their saturation levels on much smaller scale, such

as h = 7 , but for stable conditions, they still do not reach the saturation levels when h = 9 . This indicates that the hetero-

geneity is much heavier (the difference among the occurrence frequencies of 6 chosen motifs are much larger) for vertical

velocity under stable conditions, especially at smaller scales h < 2, which is related to the heavier turbulence intermittency.

These results of ME s1 of 6 dominated motifs can help to catch most of details on the scale-dependent properties. 

From the definitions given in Eqs. (4) and (5) , we know that P E s [ P ] = M E s 1 [ P ] + M E s 2 [ P ] . Since there are nearly sym-

metrical behaviors between ME s1 and ME s2 under both stable and unstable conditions, we can expect that the results of

1 − M E s 1 [ P ] of 6 dominated motifs will catch most of PE s scale-dependent behaviors. Comparison between 1 − M E s 1 [ P ] be-

haviors and PE s behaviors (see Fig. 5 (b)) indicates this conjecture is nearly totally correct except stable cases over smaller

scales ( h < 2). Independent on the stratification stability, the values of PE s are all lower at h = 0 for the original time se-

ries than that at h = 1 for the block averaged time series with time windows T s = 0 . 4 s, where no signature of the noise

in the recording time series has been found, as shown in the theoretical and numerical simulations [67] . For 1 − M E s 1 [ P ] ,

the unstable cases can recover these behaviors very well, however, the results for stable cases are totally different, which is

from the dominated occurrence frequency of motifs “1234” at h = 0 and h = 1( see Fig . 4(a) ) . Secondly, the scales at which

the both entropies reach its maximum are nearly the same for both stable and unstable conditions, in accordance with

the reported results that the duration and separation times of the structures are highly variable in the surface layer but the

dominant separation times do not depend on atmospheric stratification [23] . Thirdly, both 1 − M E s 1 [ P ] and PE s increase with

scale factor for both stable and unstable conditions when h > 2, and they are all smaller for stable conditions than that un-

der unstable conditions, which is an indicator that coherent structures occur more frequently under stable conditions than

under unstable conditions but this difference is dominated with smaller length scales [23] . 

Both changing entropies ME s1 and PE s with scales indicates that the motifs are multi-scaled as shown in Fig. 3 , such that

motifs and spikes with the finer scale are embedded in larger motifs (or ramps[9]). Under different time scales, the motifs
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account for different proportions, since the occurrence frequency of motifs “1234” and “4321” change most significantly. The

motif entropy from only limited motifs can work well in quantifying the organization degree of the motifs under different

scales. At a particular scale, the time series is more close to the behavior of white noise if it possesses smaller ME s1 ; while

the series is much well organized and the greater the proportion of motifs if the ME s1 gets larger. Shapland et al. [8] have

proposed that smaller scale ramps and ramp-like spikes are the signature of non-flux-bearing turbulence, and resolving the

characteristic of these shapes will shed light on small-scale turbulent processes. On the other hand, Shapland et al. [8] have

also proposed that the characteristics of larger scale ramps provide information on flux-bearing coherent structures. Herein

the scale ( h = 6 , 7 ) at which the ME s1 nearly reaches its saturation is about 30 ∼50 seconds, which is consistent with the

previous wavelet analysis results which indicates that the wavelet energy has local maximum values at time scales about

30 s, corresponding to the scales or frequencies of typical coherent structures [20] . 

4. Discussions 

The atmospheric winds exhibit variations on multiple time scales, in principle ranging from seconds (and less) up to

centuries. One of the consequences of multiple scales is that small scale fluctuations are strongly non-Gaussian and charac-

terized by ‘spiky’ behavior (turbulence intermittency). The challenge is that traditional methods like power spectrum analy-

sis are susceptible to these nonlinear variations which are commonly encountered [56,68] . Small-scale intermittency is still

taken as a challenging problem for the turbulence community research [69,70] , though many different methods have been

used to characterize it. For example, structure function provides a method for determining the turbulent ramp characteris-

tics and the turbulence intermittency [8,26,71] . The probability density functions (PDFs) of multi-scaled velocity increments

show a transition from Gaussian distributions to intermittent (heavy-tailed) ones as scale decreases, and large increment

values in the tails directly correspond to an increased probability to observe large events, such as wind gusts [56,72–74] .

Better characterizing small-scale wind fluctuations is important for many applications, for example, the wind variations

have a very significant effect on the design and performance of the individual wind turbine [73] , on scales down to several

seconds. 

Herein, the authors adopted a novel expression, which is based on ordinal pattern and permutation entropy, to better

characterize the scale-dependent properties of motifs in wind fluctuations. Studies show that motifs with the finer scales

show clustering properties, and 6 dominated motifs out of the whole 24 motifs account for more than 45% of the time

series on some particular scales. And results are similar for both stable conditions and unstable conditions at larger scales,

but large discrepancies are found at smaller scales (see h = 0 , 1 ), and the frequencies of motifs “1234” and “4321” are a bit

higher under stable conditions than under unstable conditions, which is consistent with previous study [23] . Motif entropy

analysis based on only limited ordinal patterns (here only 6 dominated motifs are considered) can be an efficient method

to quantify the organized features of the motifs with different scales in surface-layer wind speed time series. 

The results show that at smaller scales the following two kinds of motifs are in majority [23] : (i) a gradual rise is fol-

lowed by a sudden fall or (ii) the pattern is inverted and a sudden rise is followed by a gradual fall. It has been recognized

that downdrafts (or sweeps) and updrafts (or ejections) are the primary constitutive motions of such ramp-like patterns

in boundary-layer turbulence [65] . However, the difference between the occurrence frequencies of motif “1234” and mo-

tif “4321” is much larger under stable conditions than under unstable conditions, as shown in Fig. 3 (a), which means the

heterogeneity is much heavier for vertical velocity under stable conditions. This heterogeneous property is related to turbu-

lence intermittency and the dominated non-Gaussian behaviors found in the wind velocity records under stable conditions

[35,56] . What’ more, the occurrence frequencies of typical motifs in vertical velocity time series change greatly with differ-

ent scale factors, because there are many different physical processes over a broad range of scales in the atmosphere, that

force, modify and coexist with the ABL turbulence [2–4] . 

Furthermore, the scale-dependent motifs in latitude and longitude wind velocity ( u and v ) and temperature ( T ) series

behave similarly to those in vertical wind velocity w though their absolute amplitudes maybe quite different, and the motif

entropy analysis based on only limited ordinal patterns can be a suitable tool for testing the scale dependency of motifs in

three-dimensional wind fluctuations. 

5. Conclusions 

The ordinal pattern analysis method focuses on motifs with the finer scales which are embedded within larger scale

ramp-like structures, and can quantify the scale-dependent properties of these motifs. And the defined scale of the ramp-like

structures boundaries should be carefully taken these motifs with the finer scales into consideration in order to avoid the

discrepancy among various methods which is possibly resulted from differences in the interpretation of the various scales

of turbulence variations [8,9,18,28] . Deep understanding can be obtained from studying motif entropy variation with time

under different land surface processes. This would enable better understanding of physical properties and spatial-temporal

scales of boundary-layer turbulence. 
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