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a b s t r a c t

Different from the (1 + 1)-dimensional nonlinear systems, (2 + 1) or higher dimensional
nonlinear systems admit more rich coherent structures. Taking (2 + 1)-dimensional Kor-
teweg de Vries (KdV for short) equations as an example, the singular manifold method is
applied to search these coherent structures in an analytical form. With the aid of symbolic
computation and plot representation of Maple, some coherent structures expressed in
terms of new forms, such as dromions and solitoffs, have been illustrated by means of arbi-
trary functions in the analytical forms. In the paper, we will show these results by changing
some specific choices for three different special cases for singular variable in details.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Different from the (1 + 1)-dimensional nonlinear systems, (2 + 1) or higher dimensional nonlinear systems admit more
rich coherent structures, such as dromions [1,2] and solitoffs [3]. As we know, dromions are exact localized solutions of
(2 + 1)-dimensional equations and decay exponentially in all directions [1,2], solitoffs constitute an intermediate state be-
tween dromions and plane solitons, since they decay exponentially in all directions except a preferred one [3].

Although the coherent structures in the (2 + 1) or higher dimensional nonlinear systems have been reported in both
experimental or simulating and theoretical studies, there still exist a lot of open problems need to unreal. Especially the con-
struction of analytical solutions for these coherent structures is still a challenging problem. Not like many methods proposed
and widely applied to solve (1 + 1)-dimensional nonlinear wave equations extensively [4–13], there is still no systematic
method for (2 + 1)- and higher dimensional equations. The singular manifold method [14] has been applied to construct
the localized solutions in the (2 + 1) or higher dimensional nonlinear systems by Peng [15–18] for some specific choices
and it is shown that the singular manifold method is powerful in this direction. In this paper, we will take the (2 + 1)-dimen-
sional KdV equations [19] as an example to show there are more coherent structures by applying the singular manifold
method [14] in details.

2. The (2 + 1)-dimensional KdV equations and coherent structures

The (2 + 1)-dimensional KdV equations

ut þ uxxx � 3uvx � 3uxv ¼ 0; ð1aÞ
ux ¼ vy; ð1bÞ

were first derived by Botti et al. [19] using the idea of the weak Lax pair.
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According the singular manifold method [14], the solution to Eq. (1) can be truncated as

u ¼ /�2u0 þ /�1u1 þ u2; ð2aÞ
v ¼ /�2v0 þ /�1v1 þ v2; ð2bÞ

where / ¼ /ðx; y; tÞ is the singular manifold variable, ui ¼ uiðx; y; tÞ and v i ¼ v iðx; y; tÞ; i ¼ 0;1;2.
Although the (2 + 1)-dimensional KdV Eq. (1) have been studied by the singular manifold method extensively [15–18]

there are still many problems unsolved. For example, the u2 and/or v2 were usually taken as zero, although this assumption
will simplify the process in solving the equations, it will also let us lose some solutions.

Substituting Eq. (2) into Eq. (1) equating the coefficients with the same powers of /, one gets

u0 ¼ 2/x/y; v0 ¼ 2/2
x ; ð3aÞ

u1 ¼ �/xy; v1 ¼ �2/xx: ð3bÞ

and u2 and v2 satisfy Eq. (1), where / satisfies the following set of equations

½ð/t þ /xxxÞy � 3ðu2/xx þ v2/xyÞ�x ¼ 0; ð4aÞ
½/yð/t þ /xxxÞ þ 3ð/x/xxy � /xx/xyÞ � 3/xðu2/x þ v2/yÞ�x þ /x½ð/t þ /xxxÞy � 3ðu2/xx þ v2/xyÞ� ¼ 0; ð4bÞ
/yð/t þ /xxxÞ þ 3ð/x/xxy � /xx/xyÞ � 3/xðu2/x þ v2/yÞ ¼ 0: ð4cÞ

If / satisfies

ð/t þ /xxxÞy � 3ðu2/xx þ v2/xyÞ ¼ 0; ð5aÞ
/yð/t þ /xxxÞ þ 3ð/x/xxy � /xx/xyÞ � 3/xðu2/x þ v2/yÞ ¼ 0; ð5bÞ

then the / also satisfies (4).

Remark 1. It is obvious that Eq. (4b) is a combination of (4a) and (4c). But Eq. (4b) is not a simple combination of (4a) and
(4c), if (4a) and (4c) hold, we know the Eq. (4b) is correct, too. However, if the Eq.(4b) hold, we cannot derive (4a) and (4c),
directly.

Remark 2. It is obvious that (5b) is just the same as (4c). (5a) is special case of (4a), where if (5a) holds, then (4a) is correct,
but we can not derive (5a) from (4a) directly.

Contrary to making any assumption on u2 and v2, we can derive u2 and v2 from Eqs. (5), i.e.

u2 ¼
1

3ð/xx/y � /x/xyÞ
/yð/t þ /xxxÞy �

/xy/yð/t þ /xxxÞ
/x

þ
3/xyð/x/xxy � /xx/xyÞ

/x

� �
; ð6aÞ

v2 ¼ �
1

3ð/xx/y � /x/xyÞ
/xð/t þ /xxxÞy �

/xx/yð/t þ /xxxÞ
/x

þ
3/xxð/x/xxy � /xx/xyÞ

/x

� �
: ð6bÞ

If / satisfies

/x/xxy � /xx/xy ¼ 0; ð7Þ

then (6) becomes

u2 ¼
1

3ð/xx/y � /x/xyÞ
/yð/t þ /xxxÞy �

/xy/yð/t þ /xxxÞ
/x

� �
; ð8aÞ

v2 ¼ �
1

3ð/xx/y � /x/xyÞ
/xð/t þ /xxxÞy �

/xx/yð/t þ /xxxÞ
/x

� �
: ð8bÞ

As mentioned in Ref. [14], if the arbitrary function / takes a separable form, then from (4) we can derive u2 and v2. For any
given /, we can substitute u2 and v2 derived from (6) or (7) and (8) back into Eqs. (1), if u2 and v2 are solutions of Eq. (1), then
we get a set of solutions for Eq. (1) expressed by Eq. (2).

In the following part, we will show that three different choices of separable / will result in more coherent structures.

2.1. / ¼ exþtgðyÞ and coherent structures

If / takes the following separable form

/ ¼ exþtgðyÞ; ð9Þ
where gðyÞ is an arbitrary function, then we have

u2 ¼ u2ðyÞ ¼
2gyðyÞ
3gðyÞ ; v2 ¼ 0; ð10Þ

obviously, this is a solution to Eq. (1).
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Substitute / ¼ exþtgðyÞ back into (2), the solution to Eq. (1) can be written as

u ¼
2gyðyÞ
3gðyÞ ; v ¼ 0: ð11Þ

Thanks to the arbitrariness of function gðyÞ, we may obtain a diversity of exact solutions to Eq. (1) by choosing this function.
Case 1: If gðxÞ ¼ dnðy;mÞ, then the solution to Eq. (1) can be expressed as

u ¼ �2m2snðy;mÞcnðy;mÞ
3dnðy;mÞ ; ð12Þ

where snðy;mÞ; cnðy;mÞ and dnðy;mÞ are the Jacobi elliptic sine function, the Jacobi elliptic cosine function and the Jacobi
elliptic function of the third kind with its modulus m (0 < m < 1) [20,21], respectively.

In this case, field u is a periodic wave along y-direction, which is also one kind of breather lattice solutions [22,23], Fig. 1a
illustrates shock wave spatial structure for u when m ¼ 1.

Case 2: If gðxÞ ¼ 1þ dnðy;mÞ, then the solution to Eq. (1) can be expressed as

u ¼ �2m2snðy;mÞcnðy;mÞ
3ð1þ dnðy;mÞÞ : ð13Þ

In this case, field u is also a periodic wave along y-direction, which is also one kind of breather lattice solutions [22,23],
Fig. 1b illustrates its spatial structure when m ¼ 1, which is not a single shock wave.

Fig. 1. A typical spatial structure of (a) Eq. (12) for u and (b) Eq. (13) for u.
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Case 3: If gðxÞ ¼ 2þ snðy;mÞ, then the solution to Eq. (1) can be expressed as

u ¼ 2dnðy;mÞcnðy;mÞ
3ð2þ snðy;mÞÞ : ð14Þ

In this case, field u is also a periodic wave along y-direction, which is also one kind of breather lattice solutions [22,23], Fig. 2
illustrates its spatial structure when m ¼ 1, which is bell-shaped solitary wave.

2.2. / ¼ f ðxÞeyþt þ hðyÞ and coherent structures

If / takes the following separable form

/ ¼ f ðxÞeyþt þ hðyÞ; ð15Þ
where f ðxÞ and hðyÞ are two arbitrary functions, then we have

u2 ¼ 0; v2 ¼ v2ðxÞ ¼
f þ fxxx

3f x
; ð16Þ

obviously, this is another solution to Eq. (1).
Substitute (15) back into (2), the solution to Eq. (1) can be written as

u ¼ 2f xðhy � hÞeyþt

½feyþt þ h�2
; ð17aÞ

v ¼ 2f 2
x e2ðyþtÞ

½feyþt þ h�2
� 2f xxeyþt

feyþt þ h
þ f þ fxxx

3f x
: ð17bÞ

Thanks to the arbitrariness of functions f ðxÞ and hðyÞ, we may obtain a diversity of exact solutions to Eq. (1) by choosing
these functions.

Case 1: If f ðxÞ ¼ ex and hðyÞ ¼ sechy, then the solution to Eq. (1) can be expressed as

u ¼ 2sechyðtanh yþ 1Þexþyþt

ðexþyþt þ sechyÞ2
; ð18aÞ

v ¼ 2e2ðxþyþtÞ

ðexþyþt þ sechyÞ2
� 2exþyþt

exþyþt þ sechy
þ 2

3
: ð18bÞ

In this case, field u is a anti-solitoff while the field v is a two-interacting-soliton structure, Fig. 3 illustrates intuitively the
typical spatial structure u and v at t ¼ 1.

Case 2: If f ðxÞ ¼ e�x2 and hðyÞ ¼ sechy, then the solution to Eq. (1) can be expressed as

u ¼ 4xsechyðtanh yþ 1Þe�x2þyþt

ðe�x2þyþt þ sechyÞ2
: ð19Þ

In this case, field u is a symmetric solitoff and anti-solitoff with hamonic motions while the field v is a line-soliton structure
(with expression and figure not shown), Fig. 4 illustrates intuitively the typical spatial structure u at t ¼ 1, this is a new
coherent structure, which has not been reported by Peng [15–18].

Fig. 2. A typical spatial structure of Eq. (14).
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Fig. 3. A typical spatial structure of Eq. (18): (a) for u and (b) for v.

Fig. 4. A typical spatial structure of Eq. (19).
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Case 3: If f ðxÞ ¼ e�x2 and hðyÞ ¼ cosh y, then the solution to Eq. (1) can be expressed as

u ¼ �4xðsinh y� cosh yÞe�x2þyþt

ðe�x2þyþt þ cosh yÞ2
: ð20Þ

In this case, field u is a symmetric dromion and anti-dromion structure while the field v is a line-soliton structure (with
expression and figure not shown), Fig. 5 illustrates intuitively the typical spatial structure u at t ¼ 1.

Case 4: If f ðxÞ ¼ cosh x and hðyÞ ¼ cosh y, then the solution to Eq. (1) can be expressed as

u ¼ 2 sinh xðsinh y� cosh yÞeyþt

ðcosh xeyþt þ cosh yÞ2
: ð21Þ

In this case, field u is a symmetric solitoff and anti-solitoff while the field v is a line-soliton structure (with expression and
figure not shown), Fig. 6 illustrates intuitively the typical spatial structure u at t ¼ 1.

2.3. / ¼ f ðxÞgðy; tÞ þ hðyÞ and coherent structures

In fact, / can also be extended to

/ ¼ f ðxÞgðy; tÞ þ hðyÞ; ð22Þ

where f ðxÞ; gðy; tÞ and hðyÞ are three arbitrary functions, then we have

u2 ¼ 0; v2 ¼ v2ðx; tÞ ¼
fgt þ gfxxx

3gfx
; ð23Þ

Fig. 5. A typical spatial structure of Eq. (20).

Fig. 6. A typical spatial structure of Eq. (21).
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obviously, this is another solution to Eq. (1).
Substitute (22) back into (2), the solution to Eq. (1) can be written as

u ¼
2f xðghy � gyhÞ
ðfg þ hÞ2

; ð24aÞ

v ¼ 2f 2
x g2

ðfg þ hÞ2
� 2f xxg

fg þ h
þ fgt þ fxxxg

3f xg
: ð24bÞ

Thanks to the arbitrariness of functions f ðxÞ; gðy; tÞ and hðyÞ, we may obtain a diversity of exact solutions to Eq. (1) by choos-
ing these functions.

Case 1: If f ðxÞ ¼ sechx; gðy; tÞ ¼ sechðyþ tÞ and hðyÞ ¼ sechy, then the solution to Eq. (1) can be expressed as

u ¼ 2sechx tanh xsechðyþ tÞsechy½ tanhy� tanhðyþ tÞ�
½sechxsechðyþ tÞ þ sechy�2

; ð25aÞ

v ¼ 2sech2 x tanh2 xsech2ðyþ tÞ
½ sechxsechðyþ tÞ þ sechy�2

� 2sechx½2 tanh2 x� 1�
sechxsechðyþ tÞ þ sechy

þ tanhðyþ tÞ þ 6tanh3 x� 5 tanh x
3 tanh x

: ð25bÞ

In this case, field u is a dromion and anti-dromion, which takes different analytical form from (20) while the field v is a new
kind of line-soliton structure, Fig. 7a and b illustrates intuitively the typical spatial structure u and v at t ¼ 1.

Case 2: If f ðxÞ ¼ sechx; gðy; tÞ ¼ e�ðyþtÞ2 and hðyÞ ¼ sechy, then the solution to Eq. (1) can be expressed as

u ¼ 2sechx tanh xsechye�ðyþtÞ2 ½ tanhy� 2ðyþ tÞ�
½sechxe�ðyþtÞ2 þ sechy�2

: ð26Þ

Fig. 7. A typical spatial structure of Eq. (25): (a) for u and (b) for v.
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In this case, field u is a symmetric two-dromion and two-anti-dromion structure while the field v is a line-soliton structure
(with expression and figure not shown), Fig. 8 illustrates intuitively the typical spatial structure u at t ¼ 1.

Case 3: If f ðxÞ ¼ sechx; gðy; tÞ ¼ e�ðyþtÞ2 and hðyÞ ¼ e�y2 , then the solution to Eq. (1) can be expressed as

u ¼ �4tsechx tanh xe�ðyþtÞ2�y2

½sechxe�ðyþtÞ2 þ e�y2 �2
: ð27Þ

In this case, field u is a solitoff and anti-solitoff structure, which takes different analytical form from (21) while the field v is a
line-soliton structure (with expression and figure not shown), Fig. 9 illustrates intuitively the typical spatial structure u at
t ¼ 1.

Case 4: If f ðxÞ ¼ e�x2
; gðy; tÞ ¼ e�ðyþtÞ2 and hðyÞ ¼ e�y2 , then the solution to Eq. (1) can be expressed as

u ¼ � 8xte�½x
2þðyþtÞ2þy2 �

½e�x2�ðyþtÞ2 þ e�y2 �2
: ð28Þ

In this case, field u is another solitoff and anti-solitoff with hamonic motions, which takes different analytical form from (19)
while the field v is a line-soliton structure (with expression and figure not shown), Fig. 10 illustrates intuitively the typical
spatial structure u at t ¼ 1, which has not been reported by Peng [15–18].

Case 5: If f ðxÞ ¼ cosh x; gðy; tÞ ¼ cosh 2ðyþ tÞ þ coshðy� tÞ and hðyÞ ¼ cosh y, then the solution to Eq. (1) can be expressed
as

Fig. 8. A typical spatial structure of Eq. (26).

Fig. 9. A typical spatial structure of Eq. (27).
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u ¼ 2sechx tanh xsechðyþ tÞsechy½ tanhy� tanhðyþ tÞ�
½sechxsechðyþ tÞ þ sechy�2

; ð29aÞ

v ¼ 2 sinh xf½cosh 2ðyþ tÞ þ coshðy� tÞ� sinhy� cosh y½2 sinhðyþ tÞ þ sinhðy� tÞ�g
f coshx½cosh 2ðyþ tÞ þ coshðy� tÞ� þ cosh yg2 : ð29bÞ

In this case, field u is an asymmetric two-dromion and two-anti-dromion while the field v is a new kind of line-soliton struc-
ture, Fig. 11 illustrates intuitively the typical spatial structure u at t ¼ 1.

3. Conclusion and discussion

In this paper, the singular manifold method is applied to the (2 + 1)-dimensional KdV equations, certain special coherent
structures have been obtained because of the existence of arbitrary functions in singular variable /. Three cases for the sin-
gular variable / have been considered, it has only one arbitrary function, two arbitrary functions and three arbitrary func-
tions, respectively. Here we can find that even the analytical expression is different, the similar coherent structures can be
presented, and more new coherent structures have been obtained, too. So more applications of this method to other (2 + 1)-
dimensional or higher dimensional nonlinear equations to derive more new structures deserves to be studied further.
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Fig. 10. A typical spatial structure of Eq. (28).

Fig. 11. A typical spatial structure of Eq. (29a).
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