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Abstract Daily temperature records including daily mini-
mum, maximum, and average temperature from 190 mete-
orological stations over China during 1951-2000 are
analyzed from two perspectives: (a) long-term persistence
in direction of time varies, and (b) standard deviation in
direction of amplitude varies. By employing the detrended
fluctuation analysis (DFA), we find all the temperature
records are long-term correlated, while the exponent «
obtained from DFA varies from different districts of China
due to different climate conditions, such as the southwest
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monsoon, subtropical high, northeast cold vortex, and the
Tibetan plateau, etc. After we take the standard deviation
into account, a new index y=axo, which has been pro-
posed recently, can be obtained. By further rescaling it as
X =X — 1/5 x 03, we find an obvious change of y for these
three kinds of time series, from which the whole China can
be divided into two groups, which are comparatively con-
sistent with dry/wet distributions in the south—north areas
over China.

1 Introduction

The current global temperature changes are the issues
concerned extensively by the scientific communities, society,
and the public. Jones (1988) calculated the changes of the
annual average temperature trends from 1967 to 1986 in the
northern hemisphere and found the greatest warming dis-
tricts mainly in Russia (especially Western Siberia), Alaska,
the northwest of Canada and the southwest of Europe et al.
The Intergovernmental Panels on Climate Change (IPCC) in
1990 scientific assessment reports also pointed out: the
global temperature increases 0.5°C/10a of linear warming
trend rates from 1980 to 1989 (WMO and UNEP 1990).
Robert et al., (2001) pointed out that the average global
surface temperature since 1861 has increased 0.6+£0.2°C
during the twentienth century in The Third Assessment
Report on Climate Changes. The global temperature had
warming trends on the second half of the last century (Dai
et al. 1998; Zhai and Pan 2003; Zhai et al. 2004; Zou et al.
2005). At the same time, the temperature has increased by
1°C to 2°C in the northwest regions of North America
(Hansen et al. 1998; Cayan et al. 2001). All projections of
future change indicate that the warming is likely to continue,
and this conclusion holds regardless of the computer model
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used or the emission scenario applied in the model (Zwiers
2002). A recent test (Govindan et al. 2002) demonstrated
that the scaling performance of seven leading global climate
models by using detrended fluctuation analysis failed to
reproduce the universal scaling behavior of six observed
temperature records by underestimating the long-range per-
sistence of the atmosphere and overestimating the trends,
suggests that the anticipated global warming is also over-
estimated by the models. Moreover, other tests, such as
(Vyushin et al. 2004; Rybski et al. 2008) on the performance
of more advanced climate models where volcanic activity
has been taken into, had much better results. On the other
hand, Fraedrich and Blender (2003) demonstrated that cou-
pled atmosphere—ocean models are able to reproduce the
observed behavior up to decades and long-time memory on
centennial time scales is found only with a comprehensive
ocean model. In any case, direct comparison of local obser-
vations with the rather low resolution general circulation
models might have many pitfalls (Pielke et al. 2002). There-
fore an extended analysis of measured asymptotic correla-
tions is a prerequisite. The facts show that the climate
changes are vastly different over different areas. There-
fore, the temperature fluctuation need be discussed and
studied for regional change. The average temperature
reflects on the average extents of a regional temperature
change, which was generally considered to be unbiased
and fulfilled the normal distributions. The highest and
lowest temperature has important effect on the extreme
events of climate and weather systems. Therefore, the
research to the highest and lowest temperature is very
necessary and meaningful.

2 Data records and method

The data sets taking part in international exchange processed
by Chinese National Meteorological Information Center
have been applied in present work, which are high-quality
daily land surface climatic records including 194 Chinese
meteorological stations. The same records were utilized in
many studies to analyze climate change over China in the
recent 50 years (Zhai et al. 2004; Zou et al. 2005). Data for
three stations, station 54618, 52203, and 54909, were
kicked out for their short time range about 10 years, while
records of the other stations last about 50 years, from 1951
to 2000. According to Chen et al. (2002), scaling of corre-
lated data series are not affected by randomly cutting out
segments and stitching together the remaining parts, even
when 50% of the points are removed. Therefore, we remove
the missing values from the raw data over some stations,
since they are only a little part of series. The main data sets
used in this work are daily temperature time series which
includes daily mean, minimum, maximum temperature. On
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one hand, to overcome the natural non-stationarity of the
temperature data due to season trends, we remove the annual
cycle from the raw data 7; (daily temperatures) by comput-
ing the anomaly series AT,=T,—<T>4 for temperatures,
where < >4 denotes the long-time average value for the
given calendar day. On the other hand, to overcome the
crossover effect by calculating fluctuation function chang-
ing with the bin s in the double logarithmic coordinates, we
pick out the straight section which has removed the small-
scale parts to get the accurate scaling exponent, which can
be meaningful to consider the time series persistence.

The basic method—detrended fluctuation analysis
(DFA)—which was introduced by Peng et al. (1994),
and extended by Bunde et al. (2000) and Kantelhardt et
al. (2001), has been successfully applied to a variety of
systems ranging from DNA (Peng et al. 1994, 1995),
atmospheric temperature (Bunde et al. 1998; Govindan et
al. 2003; Kurnaz 2004a; Kiraly and Janosi 2005), and
SST (Bunde and Havlin 2002; Monetti et al., 2003).
Following the work of Peng et al. (1994, 1995), several
theoretical studies elucidated the power and limitations of
filtering out various trends from synthetic data series
(Heneghan and McDarby 2000; Talkner and Weber
2000; Hu et al. 2001).

The DFA procedure consists in the following steps
(Kantelhardt et al. 2001):

1. Daily temperature data have a non-stationary nature due
to seasonal trends. As a first step of DFA analysis, the
annual cycle is removed from the raw data 7; by com-
puting the temperature anomaly series AT,=T,—< T;>g,
i=1,..., N, < >4 denotes the long-time average for the
given calendar day.

2. An integrated time series (also called “profile”) Y(m),
m=1,...,N, is then obtained as follows:

Y(m) =Y AT, (m=12,...,N)
i=1

In the second step, we cut the profile Y(m) into Ny=[N/s]
non-overlapping segments of equal length s. Since the
record length N need not be a multiple of the consid-
ered time scale s, a short part at the end of the profile
will remain in most cases. In order not to disregard
this part of the record, the same procedure is repeated
starting from the other end of the record. Thus, 2N;
segments are obtained altogether (Bunde et al. 1996;
Govindan et al. 2001; Kantelhardt et al. 2001; Bunde
et al. 2006).

3. In the third step, we calculate the local trend for each
segment s by a least squares fit of the data. Then we
define the y coordinate of the fitting line in each box is
indicated by Y (m). The integrated signal Y(m) is
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detrended by subtracting the local trend Pg(m) in each
box of length s. as the difference between the original
time series and the fits:

Linear, cubic, or higher order polynomials can
also be used in the fitting procedure (DFA1, DFA3,
and higher order DFA). Since the detrending of the
time series is done by the subtraction of the fits from
the profile, these methods differ in their capability of
eliminating trends in the data. In nth order DFA,
trends of order n in the profile and of order n—1 in
the original record are eliminated. Thus, a compari-
son of the results for different orders of DFA allows
to estimate the strength of the trends in the time
series.

4. For given s-size box, the root-mean-square fluctuation
function, F(s), for this integrated and detrended signal is
given by

1 2N %
FIs) = |53 Do (V) = (k)

5. The scaling behavior of the fluctuation functions is
determined by analyzing the log—log plots Fi(s)
versus s. If the original series {7;} is long-range
power-law correlated, the fluctuation function will
vary as

F(s) o< s*

It is apparent that the variance will increase linearly
with increasing duration s of the segments in the double
logarithmic coordinates within a certain scaling range.
The slope value « represents the degree of the correla-
tion in the signal: if «=0.5, the signal is uncorrelated
(white noise); if «>0.5, the signal is correlated; if a<

0.5, the signal is anticorrelated, for a=1, the signal is 1/f

noise. Different orders n of DFA (DFAI1, DFA2, etc.)
differ in the order of the polynomials used in the fitting
procedure.

3 The LRC and its regional characteristics for daily min,
max, average temperature records

Firstly, we choose two examples for Stations Beijing and
Xiamen randomly to calculate the profiles and the slopes by
the DFA2. It is apparent that the profiles show different
shapes in Fig. 1a. The temperature profile for station Beijing

decreases below the value 0 till the time scale is about
11,000 days and then increases, taking on a shape just like
the letter “v”. While the profile for station Xiamen firstly
increases above the value 0 and then decreases till the value
of the profile is smaller than —800, which may indicate the
presence of a negative linear trend, taking on a shape just
like the letter*~”. The profiles exhibit similar behaviors for
the min, max, average temperature records. The trends of
the max temperature series for two stations are weaker than
those of the min, average temperature records, especially for
the min temperature in Beijing, the profile fluctuation is the
largest, which implies positive linear trends. Secondly, in
order to further detect the LRC, we have plotted fluctuation
function F(s) for Stations Beijing and Xiamen, see Fig. 1b.
The existence of crossovers in DFA curves, which may be due
to general weather situation (or Grosswetterlagen), but not due
to a broad probability distribution (Bunde et al. 1998, 2006;
Bunde et al. 2004). So, it is imperative that we remove the
trends and correlations by randomly shuffling the daily
temperature data sets for station Beijing and Xiamen in
order to test the LRC. Figure la (dash lines) and b (solid
lines) show the profiles and fluctuation results by the DFA2
for the shuffled data for the above two stations, respective-
ly. It is obvious that the DFA-exponents over stations Bei-
jing and Xiamen are about 0.5 just as expected.

Figure 1b shows that the temperature records exhibit the
same slopes in each case, this similar behavior has been
observed before for daily temperature data (Talkner and
Weber 2000; Weber and Talkner 2001; Kurnaz 2004b). In
addition, due to the lack of statistical significance for large
scale, the curves above 3 years should not be taken into
account (Hu et al. 2001). In the present work, we apply the
results of our analysis for daily temperature data at all the
weather stations for long time scales between s>30 days and
s<3 years to study temperature fluctuations for 190 weather
stations over China. The DFA-exponents are o,;;=0.70,
0.70; amax=0.70, 0.67; auyer=0.71, 0.68, corresponding to
the min, max, average temperature in station Beijing and
Xiamen, respectively. By calculations, the temperature fluc-
tuations are found to be power-law correlated. Positive long-
range correlations are detected from 30 days to 3 years for
each station, in which the range of this power law seems to
exceed one decade for the temperature records, and their
scaling exponents vary from station to station. See Fig. lc,
results of ten representative average temperature records
from different districts are shown. From bottom to top, the
Hurst exponent « is 0.57 (Wugqiaoling), 0.59 (Wuzhou),
0.63 (Nanjing), 0.69 (Ganzi), 0.69 (Daerhanlianheqi), 0.7
(Shenyang), 0.73 (Huma), 0.77 (Qumalai), 0.79 (Kelamayi),
0.85 (Tulufan). We can see that even for the outliers (o=
0.77, 0.79, 0.85), there are still good scaling behaviors
within the above ranges. We would like to note that, accord-
ing to Rybski and Bunde (2009) and Lennartz and Bunde

@ Springer



264

L. Jiang et al.

Fig. 1 a The profiles of the min, max, aver temperature (solid lines) p

and shuffled records (dash lines) for station Beijing and Xiamen during
the time from 1951 to 2000. b The double log-log plot of the power
law relationship between the detrended variability F(s) and the time
scale s over station Beijing and Xiamen. Blue line is the curve of linear
fit for the real data. Red line is the curves of linear fit for the shuffled
data. From bottom to top, are the results of the max, the min, the aver
for Xiamen, and the max, the min, the aver for Beijing. Full symbols
represent the results from shuffled records and open symbols for the
real records ¢ DFA2 for ten representative average temperature records
from different districts. From bottom to top, the Hurst exponent o is
0.57 (Wugqiaoling), 0.59 (Wuzhou), 0.63 (Nanjing), 0.69 (Ganzi), 0.69
(Daerhanlianheqi), 0.7 (Shenyang), 0.73 (Huma), 0.77 (Qumalai), 0.79
(Kelamayi), 0.85 (Tulufan). The DFA curves have been shifted by
factor of 10

(2009), DFA-exponents can scatter tremendously if we ob-
tain the sub-record (e.g., with length of 2,000) from a long
(e.g., with length of 2 million) record characterized by a
DFA-exponents . However, if the length of the sub-record
increases to 20,000 (which is similar to the length of the
records analyzed in our work), the standard deviation of the
DFA-exponents « is only around 0.01, which is smaller
compared with the standard deviations (around 0.05)
obtained in our work. Thus, the non-universality of the
scaling behaviors cannot be excluded.

Figure 2 gives frequency distributions of the scaling
exponents obtained from these 190 stations. As we can
see, consistent with the earlier observations (Bunde et al.
1996, 1998; Govindan et al. 2002; Eichner et al. 2003),
long-term correlations exist, with the range of the scaling
exponents from 0.57 to 0.90. For these 190 weather stations,
we find that average scaling exponents for the daily aver,
min, max temperature records are (aye;=0.68+0.05; vmin=
0.69£0.05; max=0.66+0.05, respectively. The daily tem-
perature fluctuations are found to be power-law correlated
for all weather stations over China and many of their scaling
exponents, especially in the northeast and northwest districts
over China, are higher than that of the temperature fluctua-
tions of earlier claims (Bunde et al. 1996, 1998; Bunde and
Havlin 2002). These results indicate that there exists a
stronger persistence in daily temperature series fluctuations.
Positive long-range correlations are detected from 3 month
to 3 years for each case, whose range of this power law
seems to exceed one decade in atmospheric temperature
(Fraedrich and Blender 2003; Govindan et al. 2003; Monetti
et al. 2003). Even though there is some scatter in the data
after a period of 10 years, the scatter in the data is still within
the error bars of the analysis (Bunde et al. 1998; Bunde et al.
2001; Kiraly and Janosi 2005). Comparing to a universal
persistence law a=0.65 for land temperature series of earlier
claims (Bunde et al. 1998; Eichner et al. 2003), the daily
min, max, average temperature time series over China seems
to exhibit a much stronger LRC. In fact, it is obvious that for
many stations the daily min, max, average temperature
series exhibit stronger persistence for small scale than that
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for large scale. A dynamics of increased baroclinicity means
that an underlying correlated process can be more often
interrupted by short memory, small-scale processes yielding
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Fig. 2 The histograms of the scaling exponents for daily min (a), max
(b), average temperature series (¢). The mean value, skewness, and
kurtosis of the slopes from the 190 stations c,;,=0.69, 0.81, 1.801;
max=0.65, 0.56, —0.19; (raye,=0.67, 0.68, 0.99, respectively

a decreased effective correlation exponent (Kiraly and
Janosi 2005). In addition, for two representative station,
skewness=0.81, 0.56, 0.68 and kurtosis=1.801, —0.19,
0.99 respectively demonstrate that the daily temperature
fluctuations are non-normal, which imply increasingly
trends of temperature.

From area 1 to area 4 in Fig. 3 min_day, one can see the
scaling exponents are gradually increasing with increasing
distance from the equator, where the area 3 seems to be a
transition belt from south to north, which is not visible on the
map given by Fraedrich and Blender (2003) and Kiraly and
Janosi (2005), which might be a consequence of their much
lower spatial resolution over China. In addition, we may
clearly see that the daily temperature fluctuations are found
to be power-law correlated and their scaling exponents are not
universal for continental stations, which is different from pre-
vious results (Bunde et al. 1998; Eichner et al. 2003). Actually,
Kiraly and Janosi (2005) have already reported that the corre-
lation exponent is not universal for continental stations over
Australia, which is in agreement with our results (see Fig. 3).

Area E in Fig. 3 shows that scaling exponent values are
decreasing with the increasing distance from east coastline
but within only smaller distances, exponent values turn into
latitudinal distributions, which seems not to be affected by
sea—land difference. So, we can deem that scaling exponents
depend on sea—land difference is weak and sea—land differ-
ence affects scaling exponent distributions within only
smaller distances from the shore. The results show that the
scaling exponents are high in littoral and temperature fluc-
tuations persistence is strong. As can be seen clearly in the
southwest region of China, especially Yunnan province, it is
obvious that the scaling exponent values in area SW in
Fig. 3 are higher than that in the adjacent regions. This
may be caused by sea—land difference, southwest monsoon,
and big landform etc. factors interactions. The future persis-
tence of temperature shows strong in such area that may be
related to the long-term transformation steadily of the south-
west monsoon, sea—land difference, and big landform etc.
factors interactions. Lastly, there exists a large distribution
of the scaling exponent values in area NW and NE in Fig. 3,
which may be due to the exchanges of south and north
weather systems, Tibet Plateau landform, Siberian high
pressure and monsoon and so on. The future temperature
change takes on obvious increasing trends. Area 5 seems to
be a transition belt that needs analyze further. In conclusion,
the daily temperature fluctuations are found to be power-law
correlated and their scaling exponents vary from station to
station. In other words, the correlation exponents are not
universal for continental stations. Numerical simulation
results show that, with further intensification of the human
activities and incessant increase for the emissions of green-
house gases, the global climate will be further warming and
may lead to more drought in the mid-latitude regions of the
northern hemisphere (Manabe et al. 1981; Manabe and
Wetherald 1987; Wetherald and Manabe 1999, 2002; Bunde
and Havlin 2002). In northern China, the temporal and spatial
pattern of precipitation has also undergone a transformation
under global temperature warming backgrounds and the
persistent droughts appear in some areas (Ma and Fu 2003).
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Fig. 3 The geographical
distributions of scaling
exponents for daily min, max,
average temperature series
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Wu and Zhang (1998) and Hsu and Liu (2006) have
reported the various climate feathers of China are major
determined by the system of the East Asian and South
Asian monsoon. The East Asian summer monsoon system
assumes significant variability at intraseasonal, interannual,
and even interdecadal time scales, which may have influ-
ence on regional characteristics of persistence for daily
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temperature records. Therefore, from the fact that the
different daily temperature fluctuation scaling exponents
are related to different climate system, and that may be
caused by East Asian Summer monsoon system, the dif-
ferent temperature fluctuation scaling exponents may re-
flect the different physical processes and mechanisms
monitoring the different climate regions over China.
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4 Standard deviation analysis and regional
characteristics for the temperature records

The factors that determine the environment conditions in some
regions are not only their variation trends, but also variation
extents, which are important consulting indicator; therefore,
the standard deviation (Std) of the temperature records (7sq)
is introduced here. To some extent, the Std reflects an extent of
the deviating mean value. The Std is larger, the meteorology
element fluctuations larger in certain regions, which increase
the possibility of extreme weather events. Standard deviation
reflects the complicated conditions of the temperature fluctu-
ations and variations in certain extents.

Figure 4 shows Ts frequency distributions of the temper-
ature records including the daily min, max, average tempera-
ture records obtained from these 190 stations over China. the
mean value of Std is iy = 3.40 £ 0.75°C, Tpax = 4.00 £+
0.65°C, Taver = 3.20 £ 0.70°C, respectively. Tgyq variations
of the maximum temperature records are comparatively con-
vergent. There are 61 stations over China, where T4 frequency
distributions are in the range 4.5 to 5.0. In addition, the
fluctuations are larger for maximum temperature records than
for the other two kinds of records, which imply the increasing
possibility of extreme events occurrence.

The skewness describes the non-symmetry distribu-
tion characteristics of variable probability density func-
tions. The skewness values are gy(min) = 0.01 +0.19;
Zi(max) = —0.11+0.27; gi(uyer) = —0.06 +0.24 for the
daily min, max, average temperature records, respectively.
This illustrates that it is not apparent for the skewness charac-
teristics of the daily temperature records located around the
“0” as a whole. The kurtosis describes the gradients of the
distribution curves. The kurtosis values are g (min) = 0.50 &
0.42; Z2(max) = 0.30 + 0.46; g5(40er) = 0.50 & 0.51, respec-
tively. There are appreciably increasing trends for Kurtosis
more than for normal school.

The Std of the daily max temperature records is larger
than that of the min, average temperature series, which may
imply the increasing extreme events. The 7y distributions
are similar over China, where there are large fluctuations in
the northeast and northwest regions, whereas, small in the
Southwest and coastline, as shown in Fig. 5. These results
indicate that there are more large probability of abrupt
climate changes in the northeast and northwest areas. Inter-
decadal changes may cause Ts's reduce in the Southwest of
China, which further affects the LRC.

5 Subarea characteristics of the index y for daily
temperature records

In order to synthetically evaluate climate conditions in cer-
tain regions, it is imperative that using an index assesses its
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Fig. 4 Histograms of the temperature Std. a Minimum temperature
records. b Maximum temperature records. ¢ Mean temperature records

overall climate change extents. The LRC can reflect varia-
tion trends of some climate element fields in the future,
which behaves the long-range correlations; whereas, The
Std weighs the variation extents of the deviation from mean
states in certain areas. We may score better regional distri-
bution characteristics by combination the scaling exponent
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Fig. 5 The geographical 60
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with the Std effectively. Therefore, by using the subarea
index y (Chen et al. 2007), its calculation formula: y=ax o
(a: the scaling exponent of time series, o: the Std of time
series), we gain the significant partition characteristics for
the daily temperature records over different regions of
China. This may provide some kind of clue on the

@ Springer

extreme events such as high temperature, drought, among
others.

We can see clearly whatever the y values of the daily min,
max, average temperature records, there are marked subarea
characteristics when we choose y =¥ — 1/5 x o3, with the
critical y values are 2.20, 2.56, 2.04. There exists an obvious
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change for such three time series, in which the whole
China can be divided into two areas in Fig. 6. We find
the y values in such two regions are consistent with dry/
wet distributions in the south-north areas over China. The
index y may provide a clue to climate forecast and evaluation.

6 Conclusions and discussions

The daily min, max, average temperature fluctuations are
found to be long-range correlated and their average scaling
exponent «=0.69+0.05 indicates that there exists a stronger

Fig. 6 The geographical 60
distributions of the index y. a
Minimum temperature records. a
b Maximum temperature
records. ¢ Mean temperature 50 - y
records
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persistence for the daily min, max, average temperature fluc-
tuations over China than that of the temperature fluctuations
of earlier claims (Bunde et al. 1998; Fraedrich and Blender
2003). Positive long-range correlations are detected from
3 months to 3 years for each weather station. Exponents
values is increasing with increasing distance from latitude in
continent (as shown in Fig. 3, areas 1-4) and such distribu-
tions are not visible on the figure given by Fraedrich and
Blender (2003) and Kiraly and Janosi (2005). Furthermore,
scaling exponents of the daily temperature fluctuations are
variable from station to station. In other words, the scaling
exponent is not universal for continental stations over China.

Scaling exponent values are decreasing with the increasing
distance from east shore only within smaller distances, which
seems not to be affected by sea—land difference. The scaling
exponent values in area SW, especially Yunnan province, are
higher than these in adjacent regions, this may be caused by
sea—land difference, southwest monsoon, and big landform
factors' interactions. There exists the high scaling index values
in area NW and NE, which may be due to the exchanges of
south and north weather systems, Tibet Plateau landform,
Siberian high pressure and monsoon and so on.

The y values of the min, max, average temperature
records exhibit marked subarea characteristics when we
choose y = ¥ — 1/5 % 03. There exists an obvious change
for such three time series, in which the whole China can be
divided into two areas. We find the y values in such two
regions are consistent with dry/wet distributions in the
south—north areas over China.
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