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Abstract In a positively long-range correlated process,
variations among consecutive steps are interdependent,
especially the influence of previous one-step variation on
next steps. How to quantify this kind of impact is of
great importance to predict the future variations. In this
paper, we demonstrate that this kind of impact depends
on the memory strength of underlying processes from two
aspects based on the theoretical and observational calcula-
tions. More precisely, the conditional calculations and the
marginal distribution of the next step variation with given
distribution of the previous one-step variation. Both the the-
oretical and observational calculations demonstrate that the
previous one-step variation affect greatly the variation for
the next one-step, and the expectation of next step varia-
tion will shift to larger value as the increase of memory
strength but with a much smaller uncertainty. This is benefi-
cial for our one-step ahead prediction, and will be especially
beneficial for multi-step ahead prediction.

1 Introduction

Fluctuations of many atmospheric or climatic variables are
considered to be auto-correlated. On small time scales (daily
to weekly, which correspond to the general weather scale
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regimes), it is normally believed that the considered varia-
tion can be well approximated by low-order autoregressive
(AR) processes. By using a simple linear function.

xi = axi−1 + εi, i = 2, 3, 4 · · · (1)

where xi denotes the past values and εi stands for a Gaussian
white noise process and a stands for the strength of auto-
correlation between the past and present states, one could
simulate the next step variation adequately. If the considered
time series are properly detrended, for many atmospheric or
climatic variables, there is even no need to apply a higher-
order ARmodel for the simulation (Bartos and Janosi 2005).

However, besides the short-term correlation on weather
scale, on large time scales (monthly, yearly, etc.), it has
been recently recognized that many atmospheric or climatic
variables are also characterized by long-range correlations
(LRC) (Koscielny-Bunde et al. 1998; Yuan et al. 2012,
2014). Long-range correlation means the present variation
may be influenced by the variations a long time ago, and
normally, it is also named as long-term memory (LTM),
long-term persistence (LTP), or the Hurst phenomenon. Dif-
ferent from the weather-scale (short-term) correlation, the
so-called LRC is believed to be originated from the interac-
tions between fast-excitation subsystems and slow-response
subsystems, such as the atmosphere-ocean interactions.
Therefore, understanding this long-range correlation phe-
nomenon is important for our further analysis of the whole
climate system. Besides temperature variations, recently,
many studies show that many records exhibit long-range
correlations, such as DNA sequences (Peng et al. 1994),
economic time series (Mantegna and Stanley 1995), heart-
beat records (Peng et al. 1995), turbulence, biological and
financial data fluctuations, and more generally, in self-
organized critical systems (Ivanova and Ausloos 1999).
Thanks to the development of nonlinear science, a new
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method, detrended fluctuation analysis (DFA), has been
developed recently (Peng et al. 1994). By calculating the
DFA exponent, α (equal to the Hurst exponent H , details
can be found in references (Koscielny-Bunde et al. 1998;
Peng et al. 1994; Yuan et al. 2012, 2014), one could tell
whether the considered time series are characterized by
LRC, and how strong the LRC is. When α = H > 0.5,
the corresponding processes are taken to be long-range pos-
itively correlated, when α = H = 0.5, no correlation
exists, and when α = H < 0.5, the corresponding
processes are taken to be long-range anti-correlated.

Due to the existence of the two kinds of correlations,
variations among consecutive steps are normally interde-
pendent. Therefore, how to quantify their connections is
of great importance to predict the future variations based
on the historical information. In this study, we will first
mainly focus on the relations between two consecutive
steps. On small time scales, e.g., the daily scale, it is obvi-
ous that yesterday’s variation should have strong links with
today’s state, since they are likely governed by the same
weather systems. But on large time scales, e.g., the monthly
scale, how the past month’s variation influence the present
month’s state is still unclear and is thus the key issue we
aim to address. Therefore, in this work, we will try to reveal
the impacts from previous one-step variation on the varia-
tion of the present step, when the long-range correlations
are considered.

One interesting phenomenon, which may be closely
related to the existence of long-range correlation, is the
clustering of extreme events (Altmann and Kantz 2005;
Bunde et al. 2005). Clustering means an extreme event
is more likely to be followed by another extreme event.
This kind of clustering behavior has been observed in
floods, winter storms, and avalanches in central Europe
(Mudelsee et al. 2003). But detailed statistical research
on the relations between the clustering behavior and long-
range correlation is difficult due to the limited record
length (Fuentes et al. 2013). Therefore, our work, which
is to study the impacts of previous one-step variation on
the variation of the present step, may provide us useful
clues to the mechanisms of the clustering phenomenon
(Bunde et al. 2005; Yuan et al. 2012).

To study the impacts of previous one-step variation on
the variation of the present step in a positively long-range
correlated process, we first try to explore their relations the-
oretically by using the fractional Brownian motion (fBm)
(Mandelbrot and van Ness 1968) theory. The increments
of fBm (which is fractional Gaussian noise, fGn for short)
are long-range correlated, which illustrates that the behav-
ior of a real process after a given time t does not only
depend on the situation at t but also of the whole his-
tory of the process up to time t (Decreusefond and Üstünel
1999). We find the stronger LRC is, the closer relations

between two consecutive steps are. With the information
of previous one-step, we can not only calculate the expec-
tation of the present step, but also determine the uncer-
tainty range (standard deviation) quantitatively. By using the
concept of marginal distribution, which has been applied
to extreme events studies for spatial analysis, we further
generalize this new method for the confirmation of the
relations between two consecutive steps in a long-range
correlated process. Our results are tested by both the arti-
ficially generated data and the observational temperature
records.

2 Data

In this paper, a modified Fourier filtering technique
(Makse et al. 1996) is applied to generate artificial time
series with different LRC (the scaling exponents alpha
ranges from 0.5 to 0.95). All the generated data are nor-
malized to zero mean and unit standard deviation with a
length of 100,000. To reach a reliable numerical statistics,
there are 1000 samples in each group with the same scaling
exponent.

Since many studies have shown that daily mean surface
air temperature variations (Koscielny-Bunde et al. 1998;
Yuan et al. 2012, 2014) are positively long-range correlated,
one daily mean surface air temperature (SAT) record is cho-
sen in this study. It is observed at Stockholm (59.3◦ N, 18.1◦
E), Sweden, from 1756 to 2000, which has been homoge-
nized in the EU-funded IMPROVE project. This time series
has been already extensively utilized, see Qian et al. (2009)
and references therein. This temperature record is chosen
for our research because it has long histories (more than
200 years) with fewer missing points. Before our anal-
ysis, we first standardize the data to generate biweekly
data by (a) removing the seasonal trend through subtract-
ing the annual cycle, as Tdi − 〈Tdi〉 (Koscielny-Bunde et al.
1998), where Tdi is the daily temperature and 〈Tdi〉 is a
long-time climatological average for each calendar day.
Note that this procedure can not remove slow background
trends such as a gradual shift of annual mean temperature
(Bartos and Janosi 2005); and (b) averaging the daily
anomaly data over 2-week-long non-overlapping windows
to remove the short-term correlations due to general weather
regimes; (c) normalizing biweekly temperature anomaly
series {Ti} by subtracting sequence mean and dividing by
sequence standard deviation, T ′

i = (Ti −〈Ti〉)/σ (Ti −〈Ti〉),
and {T ′

i } are series that we use for analysis. At the same
time, 50-day averaged data can be generated by the same
way.

In order to find long-range correlation in the original
biweekly temperature anomaly variations, surrogate pro-
cedures such as shuffling and phase randomize surrogate
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(PRS) (Govindan et al. 2007) have been applied to this nor-
malized biweekly temperature anomaly series from Stock-
holm to generate surrogated data with 1000 samples for each
group. These surrogated series will be analyzed and com-
pared with original temperature anomaly series to inves-
tigate effect of long-range correlation on the conditional
calculations and marginal distribution of one-step ahead
variations.

3 Theoretical results

3.1 Conditional calculations

Fractional Brownian motion (fBm) offers a convenient mod-
eling for non-stationary processes with long-term correla-
tions (Mandelbrot and van Ness 1968). The increments of
fBm, which are fGn, are stationary and long-range cor-
related with parameter H . Considering an fBm sequence

BH (t) =
t∑

i=1
y(i), where y(i + 1) = BH (i + 1) − BH (i)

is a long-range-correlated fGn with Gaussian distribution,
the non-stationary character of fBm is proved by its covari-
ance structure:

E[BH (t)BH (τ + t)] = σ 2

2

{
t2H + (τ + t)2H − τ 2H

}
(2)

where E[] stands for expectation operator. Without loss of
generality, we set BH (0) = 0, then

E[BH (t + τ)|BH (t)]
BH (t)

= E[BH (t + τ)BH (t)]
E[B2

H (t)]
= t2H + (τ + t)2H − τ 2H

2t2H
(3)

Considering fGn is the increment of fBm, we have

E

⎡

⎣
t+τ∑

j=t+1

y(j)|
t∑

i=1

y(i) = BH (t)

⎤

⎦

= (t + τ)2H − t2H − τ 2H

2t2H

(
t∑

i=1

y(i)

)

(4)

with memory kernel defined by K(t, τ, H) =
(t+τ)2H −t2H −τ 2H

2t2H
, and memory kernel is a factor to quantify

the impact of historical information.
Considering the simplest case, when t = 1 and τ = 1,

from Eq. 4, we have

E[y(2)|y(1)] = (22H−1 − 1)y(1) (5)

which means the conditional mean value E[y(2)|y(1)] is
totally determined by memory kernel K(1, 1, H) if y(1) is
given. While the memory kernel K(1, 1, H) is determined
totally by only one parameter, Hurst exponent H . When
H = 1/2, which corresponds to white noise process
and no memory exists, K(1, 1, 1/2) = 0, which means that
historical information has no no effect on determining the
expectation value of next-step variation. When H > 1/2,
K(1, 1, H) > 0, which means when y(1) takes a positive
value, then y(2) will has a great chance to take a posi-
tive value. This fact also explains why an extreme event in
a positively long-range correlated process usually follows
by another extreme event, which leads to the clusterings of
extreme events.

This theoretical result can also be confirmed by the
numerical calculations, see Fig. 1a, b. For each H ,
E[y(2)]/y(1) is all constant and does not vary with y(1).
The value of E[y(2)]/y(1) is totally determined by Hurst
exponent H , with increasing H , the value of E[y(2)]/y(1)

Fig. 1 Theoretical results for conditional calculations. a The varia-
tion E[y(2)]/y(1) with y(1). b The comparison between theoretical
and numerical variation E[y(2)]/y(1) with different H . c Numerical

results for conditional standard deviation σ [y(2)] with y(1) from fGn
processes. d The variation σ [y(2)] with different H
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Table 1 Standard deviation, theoretical and numerical memory kernel from different H

H 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

σ [y(2)] 1.0 0.998 0.992 0.978 0.957 0.927 0.880 0.811 0.720 0.593

KTheor. 0 0.072 0.15 0.23 0.32 0.41 0.52 0.62 0.74 0.87

KNum. 0 0.060 0.13 0.20 0.28 0.37 0.47 0.57 0.67 0.77

increases. From Fig. 1b, we can also find that with increas-
ing value of H , deviation of numerical results from the
theoretical results increases, meanwhile the total deviation
is not large, see Table 1. The reason for this deviation is that
the interdependence range will enlarge with memory inten-
sity increasing, more than one step variations will affect
the future variation in a positively long-range correlated
process.

Apart from the expectation of conditional mean value
E[y(2)|y(1)] can be derived, the expectation of con-
ditional standard deviation value σ [y(2)|y(1)] can also
be determined numerically, see Fig. 1c, d. It shows
that the value of σ [y(2)] is determined totally by H .
With increasing H , the value of σ [y(2)] will decrease
greatly.

Combining the results from conditional mean and stan-
dard deviation of y(2), we find the expectation of y(2) will
shift to larger value as the increase of memory strength but
with a much narrower band, see Figs. 1b, d. This will be
beneficial for our prediction, especially for one-step-ahead
prediction.

3.2 Marginal distribution

Marginal distribution has been applied to extreme event
studies, such as spatial dependencies of heavy rainfall

(Bernard et al. 2013) and spatial modeling of extreme tem-
perature (Fuentes et al. 2013). In these studies, extreme
value theory (EVT) has been indirectly used to model
spatial structure of climate extremes (Coles and Tawn
1996; Naveau et al. 2005), where it’s supposed that
the marginal distribution of M(x) is known with M(x)

to be maximum value of measured variable recorded
at the location x in a stationary field. Without loss
of generality, the marginal distribution can be assumed
as

P(μ) = P(M(x) < μ) = exp(−1/μ) (6)

with μ is a given threshold value. And in bivariate case, it
can be rewritten as

P(M(x) < μ,M(x + h) < μ) = exp(−θ(h)/μ) = P (u)θ(h) (7)

where θ(h) is extremal coefficient, and h is a parameter used
to measure spatial distance between observational stations.
It should be noted that, the derivation of Eqs. 6 and 7 have
been taken some assumptions; details about these deriva-
tions and assumptions can be found in the references, such
as Bernard et al. (2013), Coles and Tawn (1996), Fuentes
et al. (2013), and Naveau et al. (2005).

Fig. 2 Theoretical studies of marginal distribution. a Marginal dis-
tribution log[P(μ, τ = 1)] as distribution function log[P(μ)]. The
hollow symbols are theoretical results for different H and the solid

symbols are numerical results from fGn processes with different H . b
The variation of θ(τ = 1, H) with different H
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Fig. 3 Conditional calculations
for observational temperature
anomaly series for Stockholm.
a, b Conditional expectations,
i.e., the variation E[y(2)|y(1)]
with y(1). c and d Conditional
standard deviation of
σ [y(2)|y(1)] varies with y(1). a
and c Original observations and
its surrogates and fitted by
AR(1) process and AR(1) plus
long-range correlated noise
process. b and d Original
observations and its one-step
ahead prediction based on AR(1)
process and AR(1) plus long-
range correlated noise process.
Where hollow squares are for
original series, hollow circles are
for PRS surrogated series, solid
up-triangles are for shuffling
series, rhombuses for AR(1)
process and solid down-triangles
for AR(1) plus long-range
correlated noise process

Equation 7 can be borrowed to build the relationship
between marginal distribution of y(τ + 1) with distribution
of given y(1), i.e.,

P(μ, τ) = P({y(τ + 1)} � μ|{y(1)} � μ) (8)

Equation 8 estimates probability of y(τ + 1) � μ when
y(1) � μ is given, and it can be assumed to take the
following formula

P(μ, τ) = P(μ)θ(H,τ) (9)

Fig. 4 Marginal distribution for observational temperature anomaly
series for Stockholm. a is for the original observations and its sur-
rogates and fitted by AR(1) process and AR(1) plus long-range
correlated noise process. b is for the original observations and its
one-step-ahead prediction based on AR(1) process and AR(1) plus
long-range correlated noise process. The squares denote the results
from biweekly averaged original series, circles for PRS surrogated

series from biweekly averaged original series, down-triangles for the
results from 50-day averaged original series, rhombuses for shuffling
series from biweekly averaged original series, left-triangles for AR(1)
plus long-range correlated process and right-triangles for AR(1) pro-
cess, respectively. Solid lines with slope value of θ(1, 1, H) are fitted
over certain ranges
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where P(μ) = P({y(1)} � μ) = ∫ μ

−∞ f (y)dy is cumu-
lative distribution function (CDF) for distribution function
f (y) of y, and θ(H, τ) is marginal distribution coefficient.
If y(1) at time t = 1 is independent to y(τ + 1) at time
t = τ + 1, then conditional distribution coefficient θ(τ, H)

is 2.
In the above subsection, it has been found that his-

torical information can affect not only the expectation
of next step variation, but also, its variance for fGn
process. Using these results, Eq. 9 can be rewritten
as

P(μ, τ = 1) =
∫ μ

−∞
f (y)dy

∫ μ

−∞
f

(
z − Ky

σ

)

dz (10)

where K is memory kernel and σ is standard deviation.
If f (y) is a Gaussian distribution function, then Eq. 10

can be simplified as

P(μ, τ = 1) =
∫ μ

−∞
�(

μ − Ky

σ
)d�(y) (11)

with �(y) being a cumulative normal distribution function
for y. Eq. 11 can be solved numerically to derive the the-
oretical results for Gaussian processes, see Table 1 for the
standard deviation σ and memory kernel K .

To verify the above generalization, we use artifi-
cially generated sequences which has been introduced in
Section 2 to test the simplest case, i.e., τ = 1, the
results are shown in Fig. 2. We can see that both theo-
retical and numerical results indicate a power law relation
between P(μ) and P(μ, τ = 1) (Fig. 2a). For each
H , the numerical results nearly collapse to the theoretical
ones over wide ranges. The conditional distribution coef-
ficient are 2.01 (H = 0.5), 1.82 (H = 0.6), 1.64
(H = 0.7), 1.48 (H = 0.8), 1.30 (H = 0.9), and 1.23
(H = 0.95) for (Fig. 2b). These results demonstrate the
generalization and assumption (8) is suitable to bridge the
connection between y(2) and y(1) in a positively long-range
correlated process. At the same time, the theoretical results
of Gaussian distribution function indicate {y(2)} admits a
Gaussian distribution, the expectation E[y(2)] and standard
deviation σ(y(2)) are fully enough to describe the behaviors
of y(2).

4 Confirmation in observational analysis

In the abovementioned section, we discuss conditional cal-
culations and marginal distribution of {y(2)} by employing
theoretical derivation and numerical calculations of ideal-
ized artificially generated sequences when y(1) is given.
In this section, we will check whether these results can be
obtained from the observational record.

First of all, we have analyzed the conditional calcula-
tions {y(2)} with given y(1) in the recorded temperature
variations, and this can be found in Fig. 3a. For the origi-
nal sequences, E[y(2)] will change linearly with y(1), its
slope, i.e., K(1, 1, H), is 0.41. For shuffling case where
long-range correlations will be lost when shuffling proce-
dure is carried on the original series, the expectation of y(2)
doesn’t depend on the variation of y(1). All these results
are in line with what has been found in above theoreti-
cal results. As for the standard deviation (see Fig. 3c ),
just like the theoretical results, σ [y(2)] keeps invariant over
wide ranges as y(1) changes for both original and surro-
gated series, and much large deviation from the constant
behavior found for larger y(1) is caused by finite-size sam-
ple effect, and similar but smaller fluctuations emerged for
original series result from finite-size sample effect, either.
The similar calculations for the fitted AR(1) processes to the
observational series show that both expectations y(2) and
the standard deviation σ [y(2)] from the fitted AR(1) pro-
cesses nearly collapse to these from the observational series
(see Fig. 3a, c ). Secondly, we check the marginal distribu-
tion of {y(2)} with given y(1) in the recorded temperature
variations, this can be found in Fig. 4a. There are two power
law-scaling ranges in the original series, which are differ-
ent from what have been found in theoretical results. The
reason for this cross scaling behavior is the averaging win-
dow is too narrow to smooth off the small scale motions.
When the window size is enlarged, this kind of behavior will
disappear, see Fig. 4a for results of 50-day window aver-
aged series, the power law behavior holds over the whole
ranges, and similar behaviors can be found for surrogated
series in Stockholm. When no memory exists, which corre-
sponds to the shuffling case in Fig. 4a , θ approaches the
limit 2 as expected, a little bit deviation from the limit 2
for Stockholm maybe results from the deviation from Gaus-
sian distribution of temperature anomalies found in Fig. 5.

Fig. 5 Probability distribution of temperature anomaly variations over
Stockholm. The solid lines are from observational series and dash lines
are fitted by Gaussian distribution function (Dumouchel 1973)
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The fitted AR(1) process leads to nearly the same results as
the from the original biweekly measured series on the larger
scales.

5 Conclusion and discussion

In this paper, fBm and fGn processes have been applied
to theoretically investigate conditional mean and stan-
dard deviation of one-step-ahead variations {y(2)} when
the previous one-step variation {y(1)} has been given. It
is found that E[y(2)] changes linearly with y(1) and its
slope, i.e., memory kernel K(1, 1, H), which is totally
determined by the memory strength H . At the same time,
numerical calculations from artificially generated series
with different memory strength H confirm the results
above. The standard deviation σ [y(2)] doesn’t depend on
{y(1)}, but its value is determined by the memory strength
H , with the memory strength H increasing, the numer-
ical value of standard deviation σ [y(2)] will drop down
dramatically. The conditional connections between {y(2)}
and {y(1)} can also be obtained in the marginal distribu-
tion of {y(2)} for given {y(1)}, a power law relationship
between P(μ, τ = 1) and P(μ) being revealed. The
theoretical results of fGn processes collapse very well
in numerical analysis from artificially generated series
with different memory strength H over wide ranges, and
the conditional distribution coefficient θ(τ = 1, H)

decreases with the increase of memory strength
H .

These theoretical results are well confirmed in the one
longest observational temperature anomaly series from
Stockholm. Comparison between theoretical results and
observational analysis is demonstrated in Table 2. Since
the memory strength of temperature anomaly variation
in Stockholm is H = 0.74 (see Fig. 6), very close
to H = 0.75, then we have theoretical results of
H = 0.75 to compare with those from Stockholm. It
is obvious that there are nearly perfect concordances in
results between theoretical and observational calculations
over Stockholm, where KTheor. = 0.41 and KStockholm =
0.41, σTheor. = 0.93 and σStockholm = 0.91, θTheor. = 1.54
and θStockholm = 1.55. And it should be noted that in
order to reach reliable statistics, both σStockholm. = 0.91
and θStockholm. = 1.55 are calculated from PRS surro-
gated series. All results are calculated from the normalized
biweekly series, original or surrogated. Actually, it can be
found in Fig. 4a that different scaling behaviors emerge
when biweekly series are analyzed, which may affect the
conditional calculations and marginal distribution of {y(2)}
when {y(1)} has been given. Further investigations show
that larger averaged windows will remove cross scaling
behavior, there are no cross scaling behaviors when the

Table 2 Comparison of H , K , σ , and θ between theoretical and
observational calculations over Stockholm

H K σ θ

Theor. 0.75 0.41 0.93 1.54

Stockholm 0.74 0.41 0.91 1.55

size of averaged window is 50 days for Stockholm, see
Fig. 4a.

From the above-mentioned analysis, we can see the fitted
AR(1) process seems to be able to reach the same results as
those from the observational record over Stockholm. How-
ever, the fitted AR(1) process can not capture the long-range
correlation found in the measured series. The long-range
correlation of temperature anomaly variations can be quan-
tified by detrended fluctuation analysis (DFA for short)
method, which has been originally proposed by Peng et al.
(1994). DFA results (with DFA 2 Kantelhardt et al. (2001))
have been shown in Fig. 6. We can see that the memory
strength found in the fitted AR(1) process approaches to the
no memory case H = 0.5, but the memory strength of
temperature anomaly variation in Stockholm is H = 0.74.
Here, we can see that the fitted AR(1) process may not cap-
ture the exact information hidden in the measured series. In
order to find these information, AR(1) model (1) should be
revised as

xi = bxi−1 + ηi, i = 2, 3, 4 · · · (12)

where {ηi} is long-term correlated noise with zeros mean
and unity variance, this model was first proposed by Király
and his coauthor Király and Jánosi (2002).

Fig. 6 DFA results from observational temperature anomaly series for
Stockholm by DFA 2. The squares denote the results from original
series, circles from PRS surrogated series, up-triangles from shuffling
series, down-triangles and rhombuses for AR(1) plus long-range cor-
related process and AR(1) process fitted to biweekly averaged original
series, respectively. Solid lines with slope value of H are fitted over
certain ranges
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346 Z. Fu et al.

It should be noted that here, b in Eq. 12 is related to
a in Eq. 1. If we fit the model (1) to biweekly mean
temperature series over Stockholm, we can derive that
a = 0.412. However, if we take long-term correlated noise
into account, i.e., we choose the model (12) to fit biweekly
mean temperature series over Stockholm, we can find the
short-term correlation decreases sharply, b = 0.07 for
Stockholm. The benefit of adopting the model (12) is firstly
given by its capturing the long-range correlation over the
larger scale ranges, see Fig. 6; here, DFA shows the same
results for the model series and the original ones over
the larger scale ranges. At the same time, the expectation
and standard deviation analysis for one-step ahead statis-
tics show that the model (12) works a little bit better than
the model (1), see Figs. 3a, c and 4a. Especially, we can
see standard deviation of one-step ahead variations {y(2)}
when the previous one-step variation {y(1)} has been given
is much closer to the original observational results, see
Fig. 3c.

Secondly, the theoretical and observational results on
conditional calculations and marginal distribution of {y(2)}
with given {y(1)} are of great importance to prediction,
especially to one-step-ahead prediction, since there are
extremely close relationships between {y(2)} and {y(1)}.
Of course, interdependence among variations is not limited
to two successive steps in positively long-range correlated
processes. So, if we use the model Eqs. 1 and 12 to make
one-step-ahead prediction, i.e., we take each xi−1 in Eqs. 1
and 12 from the observational records and apply the model
Eqs. 1 and 12 to calculate each one-step-ahead predicted
value of xi . Here, all the model parameters take the same
values as the fitted ones to the observational biweekly tem-
perature anomalies over Stockholm. We take the same cal-
culations as given in the above section, the results are shown
in Figs. 3b, d and 4b. It is obvious that both the conditional
mean and standard deviation of one-step ahead variations
{y(2)} and marginal distribution for one-step ahead varia-
tions {y(2)} for the given previous one-step variation {y(1)}
are sharply distinguished between the prediction based on
AR(1) model (1) and those from the modified model (12).
Compared to the results from AR(1) model (1), the results
from the modified model (12) are much closer to those
from the observational records. Although the fitted models,
AR(1) model (1) or the modified model (12) can capture
nearly the same conditional statistics as the observational
records (see Figs. 3a, c and 4a.), the predicted results
are sharply distinguished between the prediction based on
AR(1) model (1) and those from the modified model (12).
Causing these differences is from the basic difference that
AR(1) model (1) can not capture the long-term memory
found in the observational records, but the modified model

(12) can, see Fig. 6. The long-term memory will make
the variabilities much predictable, the stronger LTM is, the
larger proportion the predictable signals will account for in
the whole variations (Yuan et al. 2013; 2014).
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