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Abstract
For any given time series, how to optimize its forecast strategies and what prediction model is adopted are of great importance. In
order to reach this goal, insight from analyzing predictability of series with known structure information is necessary. Time series
generated by theoretical models with four kinds of known predictive structures, i.e., short-term correlation, long-term correlation,
and multifractal and chaotic patterns, are applied to demonstrate that there is a well-defined relation between series’ intrinsic
predictability and prediction accuracy of any specific prediction model. And results show that both intrinsic predictability and
prediction accuracy are enhanced by these well-defined structures. There are different regimes in the relation between intrinsic
predictability and prediction accuracy for series with different known deterministic or stochastic predictive structures. These regimes
in the relation between intrinsic predictability and prediction accuracy can guide us to preselect a suitable prediction model and
forecast strategies for any underlying series by only analyzing the permutation entropy of a given series. Results from three pieces of
climate series further confirm that insights from theoretical series with known structure information indeed work well.

1 Introduction

Predictability studies are hot topics in time series analysis fields
(Lorenz 1996; Boffetta et al. 2002). Predictability has been tak-
en as a way to characterize the complexity of the time series’
dynamics (Boffetta et al. 2002), so there is close relation be-
tween predictability and complexity of the time series.
Currently, structural complexity (Li and Fu 2014; Dakos and
Soler-Toscano 2017) and prediction accuracy (Bauer et al.
2015; Dietze 2017; Babu and Reddy 2014) of time series attract
huge focuses in various fields, such as climate, ecology, econo-
my, and social service. However, there is no definite conclusion
about their association. It is generally thought (Garland et al.
2014) that stochastic processes possess the higher structural
complexity and deterministic processes like chaotic outputs
have a lower level of complexity. Different structural patterns
in a given series may influence its prediction accuracy. Previous
studies indeed show that ordinal pattern information, such as the
stronger long-termmemory in stochastic processes, can enhance
prediction accuracy (Franzke and Woollings 2011; Yuan et al.

2018). And it was also found that the increased nonlinearity
strength in chaotic series can improve the prediction accuracy
of deterministic processes (Ye and Hsieh 2008). Some previous
studies also conjectured there are some well-defined structures
hidden in the real-world series, which can induce a different
prediction accuracy (Patil et al. 2001; Yuan et al. 2013; Fu
et al. 2019; Molgedey and Ebeling 2000), but there is no further
study on whether the higher prediction accuracy is indeed in-
duced by strengthening or weakening well-defined structures.
There are different kinds of well-defined structures in the real-
world time series, both stochastic and deterministic. Will differ-
ent types of well-defined structures in the series contribute dif-
ferentially to the prediction accuracy? Will it have its own re-
gime or phase for each specific well-defined structure in the
predictability and prediction accuracy plot? Conclusive answers
to these questions will contribute greatly to the understanding
and prediction of complex time series.

As a measure of the highest realizable prediction degree,
time series intrinsic predictability (Lorenz 1996) also directly
reflects complexity of the time series (Boffetta et al. 2002).
Both of them can be quantified by permutation entropy (PE)
or weighted permutation entropy (WPE) (Garland et al. 2014;
Bandt and Pompe 2002; Fadlallah et al. 2013). Previous stud-
ies conjectured that there exist monotonous relation between
WPE and prediction accuracy for certain data, and this relation
was recommended to guide prediction of complex time series
(Garland et al. 2014; Pennekamp et al. 2018). However, only
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limited kinds of well-defined structures in time series were
considered in their studies; no definitive results about
regime or phase of series with specific well-defined
structure in the predictability and prediction accuracy
plot are provided.

In our present work, we will first make clear what com-
plexity corresponds to time series with known different types
of well-defined structures, which has not been clearly revealed
in the literature. Through these detailed studies, regime or
phase of each specific well-defined structure can be deter-
mined in the predictability and prediction accuracy plot. To
accomplish this goal, the theoretically modeled time series are
considered with commonly existing well-defined structures in
different fields, such as short-term memory, long-term mem-
ory, multifractal patterns, and nonlinearity in chaotic series
(Graves et al. 2017; Schmitt et al. 2000; Sugihara et al.
2012). Then, two types of prediction strategies, linear or non-
linear modeling, are exploited to forecast these time series
and to check to what level of prediction accuracy these
time series with different well-defined structures corre-
spond. Finally, we will reach the answer to what regime
or phase of series with specific well-defined structures
in the predictability and prediction accuracy plot. And
this conclusive result will be tested to three climate series to
validate its guiding in prediction modeling of real-world time
series.

In the following, the methodology used in this work
will be introduced in Section 2, then Section 3 reveals
the influence of four kinds of well-defined structures on
predictability and prediction accuracy, and lastly,
Section 4 concludes this work with some conclusions
and discussions.

2 Methodology

2.1 Synthetic time series with well-defined structures

2.1.1 Short-term memory

The first considered well-defined ordinal pattern is short-term
correlation or short-term memory commonly found in
the real-world time series. The autocorrelation function
of time series with short-term memory will rapidly de-
crease exponentially with time delay (Höll and Kantz
2015), and correlation can only exist in neighboring
data points for this kind of structural time series. We
employ the first order of the autoregressive process
(AR(1)) xi = axi − 1 + εi to simulate time series with this
kind of structure. Here, a represents the strength of
short-term memory, and it can be strengthened from 0
to 1, and {εi} is Gaussian white noise with zero mean and unit
standard deviation.

2.1.2 Long-term memory

For a long-term correlated time series, its autocorrelation func-
tion decreases in the form of a power function with time delay
(Höll and Kantz 2015). Here, its simulation is accomplished
by an autoregressive fractionally integrated moving average
(ARFIMA (p, d, q), Granger and Joyeux 1980; Massah and
Kantz 2016) process with p and q representing the intensities
of the autoregressive process and moving average process,
respectively. Since only the long-termmemory is needed here,
the model ARFIMA (0, d, 0) is adopted. We can control long-
term memory intensity of the wanted time series by the pa-
rameter d. The famous Hurst exponent (Graves et al. 2017) H
can be computed by H = d + 0.5, and for positive long-term
correlation, H is in the interval between 0.5 and 1.

2.1.3 Multifractal patterns

In multifractal time series, there are different autocorrelation
intensities over different magnitude levels. The multifractal
strength can be quantified by the width of a singular spectrum
dτ (Kantelhardt et al. 2002). We simulated multifractal time
series with the binomial multifractal model

xi ¼ aBi−1 1−að Þlog2N−Bi−1 ; here, N is the total number of data
points, and for the ith data point xi, Bi−1 is the number of digits
equal to 1 in the binary representation of the index i−1 (this
means that the index i−1 will be first transformed into binary
digits). The parameter a will modulate the strength of the
modeled multifractal time series (a could be changed from
0.5 to 1), since the relation between a and dτ is

dτ ¼ lna−ln 1−að Þ
ln2 . This model has been widely employed to sim-

ulate the characteristics of finance, turbulence, precipitation,
and runoff temporal data (Kantelhardt et al. 2002; Rybski et al.
2011; Nian and Fu 2019).

2.1.4 Nonlinearity in chaotic series

For a chaotic system, we take the Lorenz63 system (Lorenz
1963) as an example; the system reads

dx=dt ¼ −axþ ay
dy=dt ¼ bx−y−xz
dz=dt ¼ xy−cz

ð1Þ

The nonlinearity of chaotic series from these system out-
puts can be controlled, and the integral chaotic regime will
also vary with this controlling (Ye and Hsieh 2008; Basu
and Foufoula-Georgiou 2002; Elsner and Tsonis 1992; Ing
andWei 2003; Provenzale et al. 1992). In the previous studies,
the output time series were demonstrated to behave differently
for some choices of parameters (a, b, c) in Eq. (1) (Basu and
Foufoula-Georgiou 2002; Elsner and Tsonis 1992; Ing and
Wei 2003). Among them, the most important findings are
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those that increased nonlinearity can enhance the predictabil-
ity of the output time series (Ye and Hsieh 2008).

WefirstnumericallysolveEq. (1)byusing the fourthorderof
the Runge-Kuttamethod to get the time series of variablesX, Y,
and Z (initial values are set as (2.85,− 4.77, 30.85) forX, Y, and
Z, respectively, and the timestep is0.01).Then,wecompute the
ratioof thenonlinear termand linear termin thesecondequation

andthirdequationinEq. (1)asβy ¼ ⟨jxzj⟩
⟨jbxjþjyj⟩andβz ¼ ⟨jxyj⟩

⟨jczj⟩.

Both βy and βz represent the nonlinearity degree of the
Lorenz63 system (B< >^ and B| |^ denote temporal average
and absolute value, respectively). The detailed results about
parameters and computed nonlinearity degrees are listed in
Table 1. It should be pointed out that five cases for both βy and
βz ensure that nonlinearity influence on both predictability and
prediction accuracy can be quantified.

Up to now, we have constructed the required time series for
our present study, and we call short-term memory time series
as S(t), long-termmemory time series as L(t), multifractal time
series asM(t), and chaotic time series as Z(t) (because we only
employ the variable Z in the outputs of the Lorenz63 system).
The analyzed lengths of time series are 10,000 for all different
cases, where the first 8000 points are taken as training series
and the last 2000 points as testing series.

2.2 Model-free predictability

2.2.1 Permutation entropy

Permutation entropy (Bandt and Pompe 2002) is widely
employed to quantify the complexity of a time series {xt, t =
1, 2, …, T}. Firstly, reconstructed phase space of this time
series and the subvector in the phase space are
Xm;τ

j ¼ x j; x jþτ ; :::; x jþ m−1ð Þτ
� �

; here,m and τ denote the em-

bedding dimension and time delay. The subscript satisfies j =
1, 2, ..., T − (m − 1)τ and it represents the jth subvector. In each
subvector, there are m! possible permutations of the elements,
and every possible permutation is denoted as πi. Then, the
permutation entropy can be defined as

p πm;τ
ið Þ ¼

∑ j≤N Iu:type uð Þ¼πi X m;τ
j

� �

∑ j≤N Iu:type uð Þ¼∏ Xm;τ
j

� � ; PE m; τð Þ

¼ − ∑
i:πm;τi ∈Π

p πm;τ
ið Þlnp πm;τ

ið Þ ð2Þ

2.2.2 Weighted permutation entropy

The complexity of the time series sometimes does not only
depend on the permutation but also depend on the amplitude.
In this case, weighted permutation entropy (WPE) (Fadlallah
et al. 2013) is found to perform better in quantifying

complexity, since it takes the amplitude information in the
time series into account. The algorithm of WPE is just
like PE, after reconstructing the phase space; it is need-
ed to give weights for every permutation in advance by

computing the variance of subvectors X
m;τ
j ¼ 1

m ∑
m

k¼1
x jþ kþ1ð Þτ

and wj ¼ 1
m ∑

m

k¼1
x jþ k−1ð Þτ−X

m;τ
j

h i2
, then the weight wi will be

taken into the calculation of WPE

pw πm;τ
ið Þ ¼

∑ j≤N Iu:type uð Þ¼πi X m;τ
j

� �
wj

∑ j≤N Iu:type uð Þ¼∏ Xm;τ
j

� �
wj

;WPE m; τð Þ

¼ − ∑
i:πm;τi ∈Π

pw πm;τ
ið Þlnpw πm;τ

ið Þ ð3Þ

To avoid the finite size effect on PE/WPE analysis, it is
necessary to ensure that the data length is larger than
10m! for the analyzed time series (Riedl et al. 2013). In
our present work, the data lengths of underlying time
series are 15,000, 10,000, and 4000, respectively. We
should use the same value of m for all of them so that
5 is a solution for m. And then τ is set as 1, which has
been suggested to be suitable for quantifying permuta-
tion complexity (Bandt 2005; Riedl et al. 2013;
Pennekamp et al. 2018).

2.3 Prediction model

Since there are both linear and nonlinear ordinal pat-
terns hidden in the series generated by the four theoret-
ical models, correspondingly, both linear and nonlinear
methods should be chosen to evaluate the prediction
accuracy. At the same time, the main objective in this
study is not to optimize the best model to minimize the
predictive error but to show that the increased predictive
structure strength in the series can improve the predict-
ability and prediction accuracy, which can provide in-
sight to choose a suitable prediction model. So in this
study, only one linear strategy and one nonlinear strategy are
considered.

2.3.1 Linear prediction strategy

As a representative linear model (Ing and Wei 2003), the
fourth-order autoregressive (AR (4)) model is employed to
fit a hyperplane to the given points and then use it to make
prediction in our work. With the help of xi + 1 = k0 + k1xi + k2xi
− 1 + k3xi − 2 + k4xi − 3, we first fit the training time series to
acquire model’s parameters (k0, k1, k2, k3, k4) by the least
square method and then make one-step ahead prediction for
the testing time series.

Enhanced time series predictability with well-defined structures



2.3.2 Nonlinear prediction strategy

For nonlinear and dimensional time series (Provenzale et al.
1992; Lorenz 1969), nonlinear prediction strategies could out-
perform the linear strategies. Here, we employ a classical non-
linear method, Lorenz method analogues (LMA) (Elsner and
Tsonis 1992; Lorenz 1969; Fraser and Swinney 1986), to
achieve the nonlinear prediction strategy. This method first re-
constructs the phase space of the training time series and gets
the subvector Xm;τ

j ¼ x j; x jþτ ; :::; x jþ m−1ð Þτ
� �

. The choices of

the embedding dimension and time delay need some special
handlings, which can be found in the studies of Fraser and
Swinney (1986) and Kennel (1992). Then, the one-step ahead
prediction for the testing time series is carried out in the
reconstructed phase space. Based on the current
subvector (corresponding to a point in the phase space),
it is generally to choose the closest m + 1 points (the
distances are computed from the Euler distances of the
points/vectors) to get the weighted mean of these vectors
(weights are counted by the distances) as the forecast of the
vector in next step.

It should be noted here, before fitting and prediction, that
the original time series are all normalized by means of xi

′ = (xi
− 〈{xi}〉)/std({xi}) (B< >^ and Bstd^ denote the temporal aver-
age and standard deviation, respectively), and the lengths of
the training time series in this work are 8000 and 2000.

2.4 Prediction accuracy

To quantify the prediction accuracy and realizable predictabil-
ity, here, we employ two important metrics to depict the
predicting residuals. The first one is the forecast error (FE),
and it quantifies the levels of the residual series’ variance
relative to the normalized white noise’s variance (Hyndman
and Koehler 2006). So, FE is defined as

FE ¼
∑
n

i¼1
pi−xið Þ2

∑
n

i¼1
εi2

; ð4Þ

where pi denotes the predicted value, xi denotes the true value
in the testing time series, and {εi} is the Gaussian white noise.

The smaller the FE, the better the prediction accuracy is.
When FE is less than 1, the forecast skill is acceptable.

The second metric is the mean absolute scaled error
(MASE) between the true and predicted data (Hyndman and
Koehler 2006), and it can evaluate the match degree between
the time series and model. MASE quantifies the residual rel-
ative to the one-step variability (OSV) in the training time
series, so the prediction accuracy can be compared with ran-
dom walk prediction based on the training data. MASE is
defined as

MASE ¼ ∑
N teþN trþ1

j¼trþ1

jpj−x jj
N te

N tr
∑N tr

i¼2jxi−xi−1j
; ð5Þ

where Nte and Ntr represent the lengths of the testing and
training time series, respectively. MASE > 1 means that on
average the prediction model does perform worse than the
random walk forecast on the training data, but for MASE <
1, it performs better.

In addition to the above two metrics, the averaged relative
OSV can be taken to evaluate the variability between neigh-
boring data points in the time series, which can provide intu-
itively the variation in time series when their ordinal structures
are strengthened or weakened. The averaged relative OSV is
defined as

OSV ¼
∑
n

i¼2
jxi−xi−1j

∑
n

i¼2
jεi−εi−1j

; ð6Þ

where {εi} is the Gaussian white noise with zero mean and
unit standard deviation.

3 Results

3.1 Influence of enhanced ordinal structures
on predictability

For complex time series, four kinds of well-defined ordinal
patterns, i.e., short-term memory, long-term memory,
multifractal patterns, and nonlinearity in chaotic series, are

Table 1 Detailed information of
chaotic time series Chaotic case

I II III IV V
Reference (Elsner and

Tsonis 1992)
(Basu and Foufoula-
Georgiou 2002)

(Lorenz 1963)

(a, b, c) (16, 120.1, 4) (16, 45.92, 4) (13, 36.4, 3.47) (10, 31.6, 8/3) (10, 28, 8/3)

βy 0.008 0.019 0.026 0.030 0.033

βz 0.26 0.27 0.31 0.39 0.40
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common ordinal structures. Among them, the short-term
memory and long-term memory are linear ordinal structures,
but the multifractal patterns and nonlinearity in chaotic series
are nonlinear ordinal structures. Both linear and nonlinear
ordinal structures may play a differential role in adjusting
the corresponding series’ intrinsic predictability. Actually,
the increased strength of both linear and nonlinear ordinal
structures can lower the time series’ complexity (PE/WPE)
and enhance time series’ intrinsic predictability. As suggested
by Garland et al. 2014, the time series’ intrinsic predictability
can be quantified by 1 −WPE or 1 − PE (see Fig. 1 for de-
tails). Besides this uniform monotonous association between
the time series’ intrinsic predictability and the strength of or-
dinal structures, more information can be revealed in the as-
sociation between the time series’ intrinsic predictability and
the strength of ordinal structures. Most importantly, linear and
nonlinear ordinal structures may play a differential role in
adjusting the corresponding series’ intrinsic predictability.
There are different regimes or phases for linear and nonlinear
ordinal structures in the intrinsic predictability and ordinal
structure plot. Time series with different types of ordinal struc-
tures admit different levels of WPE’s value, where the linear
stochastic process’s ordinal structures, such as short-term
memory and long-term memory, have higher WPE (see
Fig. 1a and b) and where the deterministic nonlinear
process’s ordinal structures, such as multifractal patterns
and chaotic attractors, have lower WPE (see Fig. 1c and
d). This well-defined distinguishable regimes or phases
for linear and nonlinear ordinal structures in the intrin-
sic predictability and ordinal structure plot can be taken
as an indicator to preselect a corresponding suitable
model to model and predict the underlying series
(Garland et al. 2014). And lastly, we should point out
that PE may not work well for all kinds of time series,
just like multifractal series; it cannot differentiate the
multifractal series of different multifractal strengths
(see Fig. 1c). This may be caused by the fact that
multifractal structures in multifractal series are induced by
different amplitudes rather than temporal correlations.

3.2 Influence of enhanced ordinal structures
on prediction accuracy

Just as we mentioned in the previous sections, the main ob-
jective in this study is not to optimize the best model to min-
imize the predictive error but to show that the increased pre-
dictive structure strength in the series can improve prediction
accuracy, which can provide insights to choose a suitable pre-
diction model. So, in this subsection, results from only AR(4)
and LMA are compared.

3.2.1 Linear structures

First of all, let us demonstrate how different strengths of ordi-
nal structures influence practical prediction from the AR and
LMA methods for time series with short-term memory.
Figure 2 presents the comparison among the testing series,
predicted series from AR, and predicted series from LMA
under three typical cases with a = 0.2, a = 0.55, and a = 0.9.
The most important common finding is that the match degree
between the testing series and predicted ones increases with
the increasing strengths of ordinal structures, and the more the
predictive patterns, the better the prediction model performs.
Another finding is that both AR and LMA perform almost
equally for the short-term correlated series; when the strength
of ordinal structures is weaker (such as a = 0.2), both methods
cannot capture the extreme variations in the testing series (see
Fig. 2a), but for the higher strength of ordinal structures (such
as a = 0.9), both methods can capture the detailed variations in
the testing series (see Fig. 2c). This finding is consistent with
previous studies, since LMA predictor is practicable for both
linear and nonlinear series (Garland et al. 2014).

More quantitative results can be provided by the two pre-
diction accuracy metrics. For all cases under different
strengths of ordinal structures, both the AR and LMA
methods reach the same results. The mean of FE is not larger
than 1, and FE monotonously decreases to 0.05 when short-
term memory is enhanced to a = 1.0, which means that there
exists a forecast skill and that the prediction accuracy is

Fig. 1 Scatter plots for the monotonous relation between PE/WPE (hol-
low blue/solid black dots) and the strengths of ordinal structures with (a)
short-term memory, (b) long-term memory, (c) multifractal patterns, and

(d) chaotic attractors, respectively. The error bars in (a) and (b) are the
intervals of 2.5 standard deviation
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becoming better. The standard deviations of FE from both the
AR and LMA methods decrease with the increasing strengths
of ordinal structures (see Fig. 3a). Similarly, MASE shows the
same results for both the AR and LMAmethods. SinceMASE
reflects the match degree between the predicted series and the
testing series compared with those from random walk predic-
tion, whether it is less than 1 is the rule for the match degree.
We can see for the AR and LMA methods that MASE is less
than 1 and MASE increases with increasing strengths of ordi-
nal structures (see Fig. 3b). The standard deviations of MASE
from both the AR and LMA methods decrease with the in-
creasing strengths of ordinal structures (see Fig. 3b). It
should be noted that the behavior of MASE is contrary
to that of OSV of the time series itself. Figure 3a shows
the changing OSV of the time series with short-term
memory and the averaged OSV is becoming weak when
the short-term memory is enhanced, which coincides with the
results from WPE.

Since both series with short-term memory and series with
long-term memory are linear stochastic series, the results are
similar for both kinds of series (see Fig. 2 and Fig. 4). When
long-term memory is strengthened, some local patterns like
trends in sequences become more persistent (Franzke and
Woollings 2011), and the averaged OSV in Fig. 5a decreases.
However, still minor differences can be found for both kinds
of series (see Fig. 3 and Fig. 5). The first difference between
them is that the range of OSV, FE, and MASE is
narrower for series with long-term memory than with
short-term memory. At the same time, the standard de-
viation for both FE and MASE is almost unchanged
with different strengths of ordinal structures in series with
long-term memory, and this feature is totally different from
that in series with short-term memory.

And lastly, we want to stress that the computation cost in
LMA is huger than that in AR; so if we can learn from the
WPE information for any given series that both LMA and AR
perform equally, we do not need to repeat the computation in
LMA.
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3.2.2 Nonlinear structures

The aforementioned results are about linear structures in the
time series; will enhancing nonlinear structures make FE,
MASE, and OSV have the same responses or more specific
features that can be revealed? Among the nonlinear structures,
multifractal patterns and chaotic attractors are two typical non-
linear structures in real-world time series. Both multifractal
series and chaotic series share more features, such as the di-
mension is all fractal. However, more different behaviors are
also revealed in both kinds of series, for example, chaotic
series have no marked magnitude differences with sharp tran-
sition commonly found in the multifractal series (see Fig. 6).
These marked magnitude differences may result in distin-
guished predictability and prediction accuracy.

First of all, we can learn from the multifractal series that the
peaks with sharp transition are more dominated when the
multifractal strength is increased (see Fig. 6). At the same
time, the temporal distribution of peaks becomes uniform
when the multifractal strength is stronger, and the differences
between large and small fluctuations are also magnified.
However, the averaged OSV decreases with strengthening
multifractal structures (Fig. 7a), which coincides with results
given by WPE (Fig. 1c). And these features are markedly
different from those revealed in linear series shown in the
aforementioned results. So, the most marked difference is that
AR and LMA perform totally differently (Fig. 6 compared
with Fig. 2 and Fig. 5). AR cannot capture the detailed varia-
tions in the testing series, especially for the information related
to the larger magnitudes, but LMA can. With the increasing
multifractal strength, the performance of LMA is nearly per-
fect, which can be quantitatively found in two metric results
given in Fig. 7b. We can see that for most of cases, FE from

LMA is much smaller than that from AR, and its value is
limited below 0.125 for all cases. At the same time, MASE
is increasing slowly with its value below 0.75 for all cases.
However, the value of MASE is increasing slowly with its

Fig. 4 Comparison between
predicted time series (black lines
from AR(4) and green lines from
LMA) and testing time series with
different long-term memory (gray
lines): (a) 0.6, (b) 0.9, and (c) 0.99

Fig. 5 Evaluation of predicted time series with different long-term mem-
ory: (a) FE and (b) MASE. The solid blue lines present AR predications
(blue shadows behind are intervals of 2.5 standard deviation) and hollow
black dots represent LMA predictions (error bars are intervals of 2.5
standard deviation). In particular, the solid green up-triangles represent
the variation of one-step variability in chaotic time series
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value above 1.25 for all cases, which indicates that the predic-
tion strategy from linear methods is unsuitable to predict the
multifractal series.

Whereas for the chaotic series with different nonlinear
strengths, the results are a little different from those given
for the multifractal series, where LMA works well but AR

fails for all cases (Fig. 8). The variations in the chaotic series
are smooth without peaks with sharp transition, which makes
the averaged OSV be below the minimum value given in the
multifractal series for all cases but one (see Fig. 9a).
Quantitatively, both FE and MASE from LMA are the lowest
among four kinds of well-defined ordinal structures, where FE
from LMA nearly collapses to 0 (Fig. 9a) and where MASE
from LMA is below 0.03, which is two orders smaller than
that from AR (Fig. 9b). For AR, MASE is larger than 3 for all
cases. The results show that the nonlinear model such as LMA
performs very well for the prediction of the chaotic time se-
ries, but the linear model such as AR works even much worse.
The reason for this is that trajectory becomes denser with
enhancing nonlinearity in the chaotic series (Ye and Hsieh
2008; Sugihara et al. 2012; Elsner and Tsonis 1992; Ing and
Wei 2003; Provenzale et al. 1992) and that the variability in
neighboring points will decrease. And all of these facts will
make the variations in the chaotic series more ordered with the
lowest WPE (see Fig. 1).

3.3 Association between prediction accuracy
and predictability

Previous studies have conjectured there is a well association
between the intrinsic predictability (WPE/PE) and the realiz-
able predictability or prediction accuracy (FE/MASE) in any
given series (Garland et al. 2014). And this conjecture has
been validated in several series (Fu et al. 2019; Pennekamp
et al. 2018). However, there is no further study to exploit the
deep association between the intrinsic predictability (WPE/
PE) and the realizable predictability or prediction accuracy
(FE/MASE). For the aforementioned four kinds of theoretical
series, we have a chance to achieve this goal. If we show the
results of (1 −WPE) and MASE from these four kinds of

Fig. 6 Comparison between
predicted time series (black lines
from AR(4) and green lines from
LMA) and testing multifractal
time series (gray lines) with
different multifractal strengths:
(a) 0.58, (b) 1.78, and (c) 3.17

Fig. 7 Evaluation of predicted multifractal time series under different
multifractal strengths: (a) FE and (b)MASE. The solid blue dots represent
AR predications and hollow black dots represent LMA predictions. In
particular, the solid green up-triangles represent the variation of one-step
variability in chaotic time series
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theoretical series in a plot, a clearer association is reached
between the intrinsic predictability and the realizable predict-
ability or prediction accuracy (see Fig. 10). There are different
regimes or phases for linear and nonlinear time series in
the (1 −WPE)-MASE plot. The regime with the highest
1 −WPE and the lowest MASE corresponds to the case
of the chaotic series, whereas the middle regime is for
the case of the multifractal series, and the regime with
the lowest 1 −WPE and the highest MASE is for the
linear series. There is a distinct regime separation be-
tween linear series and nonlinear series. The regime in
the (1 −WPE)-MASE plot can be taken as a benchmark
to guide the choice of the prediction strategy for any
given series from the real world. Since 1 −WPE for any
given series is easier to compute and compare the esti-
mated 1 −WPE with the results given in Fig. 10, we
can decide whether a linear or nonlinear strategy is chosen
to model or predict this given series.

3.4 Application in predicting real-world time series

To illustrate the power of the regime revealed in the (1 −
WPE)-MASE plot in guiding the suitable modeling or
predicting strategy to some real-world complex time series,
three climatic records are studied here. All climatic records,
including daily air temperature anomaly in Valkenburg (TEM)
from 1976 to 2017, daily indices of El Niño-Southern
Oscillation (ENSO) from 1980 to 2017, and daily indices of
Atlantic Meridional Overturning Circulation (AMOC) from
2004 to 2017, were downloaded from the site (https://
climexp.knmi.nl/start.cgi). First of all, we can compute the
intrinsic predictability (1 −WPE) for each series, and their
values are 0.18 for TEM, 0.43 for ENSO, and 0.73 for
AMOC, detailed results are summarized in Table 2.

Comparing the 1 −WPE results with the regimes shown in
the (1 −WPE)-MASE plot (Fig. 10), the suggested modeling
or predicting strategy is totally different. Firstly, 1 −
WPE = 0.18 indicates that the daily air temperature anomaly
in Valkenburg should be modeled and predicted by the linear
model such as AR, and the nonlinear method such as LMA

Fig. 8 Comparison between
predicted time series (black lines
from AR(4) and green lines from
LMA) and testing chaotic time
series (gray lines) with different
nonlinearity: (a) 0.26, (b) 0.27,
and (c) 0.40

Fig. 9 Evaluation of predicted chaotic time series under different
nonlinearity: (a) FE and (b) MASE. The solid blue dots represent AR
predications and hollow black dots represent LMA predictions. In partic-
ular, the solid green up-triangles represent the variation of one-step var-
iability in chaotic time series
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will reach similar results. The predication accuracy quantified
by MASE for LMA is 0.98 and for AR is 0.96 (see Table 2),
and they are all below 1, which indicates both methods work
well. The state (0.18, 0.98) corresponds well to the output with
short-term memory (see green dot T(0.18, 0.98) in Fig. 10).
The well-matched degree between testing and predicted series
can be found in Fig. 11a and d. Secondly, for the ENSO index,
1 −WPE = 0.43, which lies between the multifractal regime
and the regime with short-term memory, and it is much close
to the multifractal regime (see red dot E(0.43, 0.86) in
Fig. 10). So, nonlinear methods should be adopted to model
and predict the daily ENSO index variations; further compu-
tation confirms that LMA indeed performs better (with
MASE = 0.86, which is below 1) than AR does (with
MASE = 2.19, which indicates the AR model fails to capture
the detailed ENSO index variations, see Fig. 11b and e). The
well-matched degree between testing and predicted se-
ries from LMA can be found in Fig. 11b and e. And
lastly, for the AMOC index, 1 −WPE = 0.73, the in-
trinsic predictability is really high. The state in the (1 −
WPE)-MASE plot belongs to the nonlinear regime

between the chaotic regime and the multifractal regime
(see blue dot A(0.73, 0.21) in Fig. 10), which indicates
that the linear model cannot model this series well (with
MASE = 2.79, which indicates the AR model fails to
capture the detailed AMOC index variations, see Fig. 11c
and f) and that the nonlinear methods must be chosen tomodel
and predict the daily AMOC index variations. In fact, from the
daily AMOC index series, we can find there are regime shifts
(see Fig. 11f) just like what we find in the chaotic series (see
Fig. 8c).

4 Conclusion and discussion

This article reveals that predictability is enhanced by the in-
creasing strength of the ordinal structures, such as the short-
term memory, long-term memory, multifractal patterns, and
chaotic attractors, which commonly exist in real-world time
series. Since the time series’ complexity and one-step variabil-
ity are reduced with the increasing strength of these well-
defined structures, the prediction models and methods can

Fig. 10 Scatter plot MASE
(LMA) versus 1 −WPE for series
with different ordinal structures
(solid black squares for short-term
memory, hollow red dots for long-
term memory, solid blue up-
triangles for multifractal patterns,
and hollow green down-triangles
for chaotic attractors). There are
different regimes for series with
different ordinal patterns. Solid
blue dot denotes state A(0.21,
0.73) from the daily AMOC in-
dex, solid red dot denotes state
E(0.86, 0.43) from the daily
ENSO index, and solid green dot
denotes state T(0.98, 0.18) from
the daily air temperature anomaly

Table 2 Details for real-world time series

Variable Time range Data length Prediction length 1 −WPE MASE (LMA) MASE (AR)

TEM in Valkenburg 1976–2017 (daily) 15,000 2000 0.18 0.98 0.96

ENSO 1980–2017 (daily) 13,605 2000 0.43 0.86 2.19

AMOC 2004–2017 (daily) 4706 2000 0.73 0.21 2.79
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depict and predict the temporal variations of strengthening
ordinal structures better. Detailed studies on the intrinsic pre-
dictability (quantified by 1 −WPE) and prediction accuracy
(by FE or MASE) for these four kinds of theoretical series
with known differential ordinal structures show that there is
an own specific regime or phase in the intrinsic predictability
or prediction accuracy for each kind of theoretical series.
Deterministic and nonlinear series take the higher intrinsic
predictability or prediction accuracy (the lower forecast error),
whereas linear and stochastic series have the lower intrinsic
predictability or prediction accuracy (the higher forecast
error).

The well corresponding relation between the intrinsic pre-
dictability and the prediction accuracy for each specific series
with its own ordinal structures indicates there is specific re-
gime in the (1 −WPE)-MASE plot for each kind of series with
specific ordinal structures. Only from the estimated 1 −WPE
for any given series can one determine which regime this
underanalyzing series belongs to. This can guide us to prese-
lect and optimize the suitable model or method to model or
predict this series with unknown ordinal structures from the
real world. Taking this insight into account, we analyze three
climate series, i.e., daily air temperature anomaly in
Valkenburg (TEM) from 1976 to 2017, daily indices of El
Niño-Southern Oscillation (ENSO) from 1980 to 2017, and
daily indices of Atlantic Meridional Overturning Circulation
(AMOC) from 2004 to 2017. From the estimated 1 −WPE for
these three different series, 0.18 for the temperature anomaly,
0.43 for the ENSO index, and 0.73 for the AMOC index, we
can easily classify the daily air temperature anomaly in
Valkenburg as series with the short-termmemory and the daily
ENSO index and daily AMOC index as nonlinear series.

Further prediction studies on these series confirm that the
AR model is enough to the daily air temperature anomaly in
Valkenburg, and this result is consistent with the previous
findings that higher-frequency daily surface temperature fluc-
tuations can be well modeled by the AR model after proper
detrending (von Storch and Zwiers 1999; Bartos and Janosi
2005). However, the AR model fails to model and predict the
daily ENSO index and daily AMOC index. Especially, there is
substantial variability on short time scales of a few days
(Balan Sarojini et al. 2011; Cunningham et al. 2007) in the
AMOC index taking the chaos-like behaviors, so a model or
method that can address chaotic series is required. Whereas
for the high-frequency ENSO index, there are more compli-
cated features with multiple periods and there is goodmemory
and no single scaling (Petroni and Ausloos 2008), which are
certainly different from those of the linear stochastic process-
es. Since the nonlinear strategy like LMA is computationally
expensive, the estimation of 1 −WPE for any given series is
simple with a little computation cost. Only from the estimated
1 −WPE for any given series can we optimize our modeling
or prediction strategy in advance on which modeling or pre-
diction strategy we should choose.

It should be pointed out that there are many other methods
to infer the time series’ intrinsic predictability, such as mean
prediction time (Salvino et al. 1995), fractal dimension
(Rangarajan and Sant 1997), memory or persistence
(Franzke and Woollings 2011), Lyapunov exponents, and im-
proved Lyapunov exponents (Patil et al. 2001; Ding et al.
2010; Ding et al. 2011). Here, the choice of WPE (Garland
et al. 2014; Fu et al. 2019; Pennekamp et al. 2018) in this
study is due to its sensitiveness to different structures and
robustness to different transformation (Garland et al. 2014;

Fig. 11 Comparison between predicted time series (black lines from AR(4) and green lines from LMA) and testing real-world time series: (a) TEM, (b)
ENSO, and (c) AMOC. (d)–(f) Locally enlarged version for (a)–(c), respectively
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Fu et al. 2019; Pennekamp et al. 2018). In addition, although
one-step prediction is investigated here, the relevant results
are qualitatively similar for multistep prediction. But there
may be more marked differences between linear and nonlinear
methods for series with nonlinear ordinal patterns, since non-
linear behaviors will be dominant for multistep prediction
(Sugihara 1990).
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