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Abstract Effects of extreme value loss on long-term
correlated time series are analyzed by means of de-
trended fluctuation analysis (DFA) and power spectral
density analysis. Weaker memory can be detected after
removing of extreme values for the artificial long-term
correlated data, indicating the emergence of extreme
events may be closely related to long-term memory. For
observational temperature records, similar results are
obtained, but not in all stations. For example, in some
stations, only extending of scaling range to smaller time
scales occurs, which may be due to the asymmetric
distribution of values in the record. By comparing our
findings with previous works, clustered positions of the
extreme events are recognized as an important prop-
erty in long-term correlated records. Through a simple
numerical test, close relations between extreme events
and long-term memory are discovered, which is helpful
for our understanding of the effects of extreme value
loss on long-term correlated records.
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1 Introduction

Recently, more and more studies show that many
natural records exhibit long-term correlations, such
as DNA sequences (Peng et al. 1992, 1994; Arneodo
et al. 1995; Buldyrev et al. 1995), economic time series
(Mantegna and Stanley 1995; Liu et al. 1997), heart-
beat records (Peng et al. 1995; Bunde et al. 2000),
as well as meteorological and climatological records
(Koscielny-Bunde et al. 1998; Weber and Talkner 2001;
kantelhardt et al. 2006; Chen et al. 2007; Rybski et al.
2008). Especially in the last decade, since a method
called detrended fluctuation analysis (DFA) was de-
veloped (Peng et al. 1994), more studies on long-term
correlation have been published Buldyrev et al. (1995);
Koscielny-Bunde et al. (1998); Eichner et al. (2003).
Using this method, we can characterize the fractal
properties more reliably without being affected by non-
stationarity and trends. Another interesting topic is
the so-called extreme value statistics, which has also
been studied extensively in recent years (Altmann and
Kantz 2005; Livina et al. 2005; Eichner et al. 2006).
Extreme events, such as very high temperatures, floods,
droughts, or earthquakes, may cause disasters which
can seriously affect our daily life. Thus, a question may
come out: Are there any relations between extreme
events and long-term correlations? Some work have
been done to address this question, like the return
intervals of rare events in records may have similar
long-term correlations to that of the original records
(Bunde et al. 2004, 2005; Eichner et al. 2007). How-
ever, in our paper, we mainly focus on how the ex-
treme events, not the return intervals, affect the long-
term correlations. According to the definition given by
World Meteorological Organization (WMO), extreme

@ Springer



134

N. Yuan et al.

events are defined when the absolute values exceed
20, where o is standard deviation calculated from the
whole time series. Also, climate extremes can be clas-
sified into two broad groups: (a) those based on simple
climate statistics, which include extremes such as very
low or very high daily temperatures, or heavy daily
(monthly) rainfall amounts, etc. and (b) those driven
by more complex mechanisms, such as drought, floods,
or hurricanes, which do not necessarily occur every
year at a given location (Easterling et al. 2000). In
this paper, similar to the definition given by WMO
and from Bunde et al. (2005), we define the extremes
as values exceed a certain threshold in observational
records.

The method we use here—DFA—has been con-
sidered robust. For positively correlated signals, even
when up to 50% of the points are removed, the scal-
ing behaviors will not be affected (Chen et al. 2002).
Furthermore, according to Ma et al. (2010), even when
the length of data loss segments is not fixed but ran-
dom and follows a certain distribution, positively cor-
related signals still show practically no changes for
up to 65% of data loss. However, we find that the
loss of extreme values in signals may cause different
results, which are interesting and imply close relations
between extreme events and long-term correlations. To
confirm this finding, we also use the power spectral
density (PSD) analysis to test whether the long-term
memory is affected or it is just a shortcoming of the
method DFA. In this article, both artificial long-term
correlated signals and observational records have been
analyzed, respectively. For artificial signals obtained
through a modified Fourier filtering technique (Makse
et al. 1996), weaker long-term correlations have been
found under the influence of extreme value loss. But
for observational records, the situations become more
complex. Some of the results are similar with that of
the artificial data, but for some others, due to non-
stationarity of the records and the resulting crossovers
in the DFA curve, it is difficult to reach a reliable
conclusion. Here we only show one possible case, of
which the effect of extreme value loss is reflected in the
extension of the scaling range. For further understand-
ing of this phenomenon, we combine our findings with
the previous work of return intervals and clustering
of extreme events, and clustered positions of extreme
values are found important to the long-term memory.
Through a simple numerical test and from another
perspective, we find that the emergence of clustered
extreme values may be due to the long-term memory.
For more details, please refer to Section 4.
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The rest of this article is organized as follows: In
Section 2, we will give a brief introduction of the analy-
sis method and the data sets we used. Results based
on the artificial data and the observational records
are presented in Section 3. In Section 4, we make an
extended discussion on the relations between extreme
evens and long-term memory and conclude this paper.

2 Methodology and data
2.1 Methodology outline
2.1.1 Detrended fluctuation analysis

DFA is an important improvement of the classical
FA for non-stationary signals based on the random
walk theory. It is essential to distinguish trends from
long-term fluctuations which are intrinsic to the data;
thus, this method is reliable for the detection of
long-term correlations. In this article, we employ the
second-order DFA2, for our analysis (Kantelhardt et al.
2001). Suppose we have a fluctuating signal T;(i =
1,2,3,---, N), one mainly considers the cumulated
sum Y, = ZL{Ti —(T)}, where (T) is the mean of
T; and studies in non-overlapping time windows of
length s. In each window, we calculate the local trend
through second-order polynomial fitting and get the
square fluctuation F2(j) as the variance of Y around
this best quadratic fit, where j points to the j-th win-
dow. By averaging over all windows, we can get the
root mean square fluctuations F(s). For long-term cor-
related records, F(s) scales as F(s) ~ s%, where the
scaling exponent « is a self-similarity parameter which
represents the signal’s long-term power-law correlation
properties. If o« > %, the signal is positively correlated;
if @ < 1, the signal is anti-correlated; if « = 1, there
is no long-term correlation Peng et al. (1994). Notice
the power-law auto-correlation function C(s) ~ s77;
the exponents o and y are connected as y = 2(1 — «)
(Koscielny-Bunde et al. 1998; Kantelhardt et al. 2001).

2.1.2 Power spectral density analysis

PSD analysis is a conventional and well-known method
to characterize the fractal properties of time series.
It is convenient and useful when the time series is
stationary, such as the artificial data we generate in our
study. To determine the power spectral density S(f),
we first calculate the autocorrelation C(s) = ([x(t +
$) — (X)][x(?) — (x)])/o* of the signal, where s is the
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time lag and o its variance. With C(s), we can get
S(f) by Fourier transform. If the autocorrelation shows
a scaling behavior for times larger than s, one also
finds a scaling behavior of the power spectrum in the
corresponding frequency region f < 1/s. For long-term
correlated time series, with increasing frequency f,
S(f) decays by a power law, S(f) ~ f~#, where B
characterizes the fractal properties of signal Talkner
and Weber (2000). Compared with the power-law auto-
correlation function C(s) ~ s~7, it can be shown easily
that y = 1 — 8. In this article, we apply this method to
artificial signals to confirm our findings.

2.2 Data

In this study, we use a modified Fourier filtering tech-
nique Makse et al. (1996) to generate signals with
different scaling behaviors. Nine groups of long-term
correlated signals with length of 20,000 are generated,
as well as a group of white noises for comparison. The
values of the scaling exponents « are around 0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95, respectively.
To get a reliable numerical result, there are 1,000 sam-
ples in each group.

Meanwhile, we also use observational records for
analyzing. Since many studies have shown that temper-
ature records are positively long-term correlated (see
Koscielny-Bunde et al. (1998), Fraedrich and Blender
(2003), Lin et al. (2007), and Rybski et al. (2008) in
this study), we only choose the daily mean tempera-
ture records over China. The data are obtained from
China Meteorological Data Sharing Service System
(http://cdc.cma.gov.cn), and the latest 50 years (from
1961 to 2010) are chosen. Before analysis, we have stan-
dardized the data by subtracting the annual cycle and
dividing by the seasonal standard deviation (Lennartz
and Bunde 2011),

T, — (T
= 0 1
T (T W

where 7; is the original temperature records and 7; is
the standardized data, which we use for analysis.

3 Results

At the very beginning, we would like to show one rep-
resentative result from the artificial signals. Different
from the way of removing segments in Chen et al.
(2002); Ma et al. (2010), here we remove the extreme

values in the records, and the way we select extreme
values has been shown in Fig. 1le. We can see in Fig. 1a
that if we remove the extreme values away from the
artificial data, weaker scaling behavior can be found.
To better confirm this findings, we also remove 5%
values (not the extreme values) in the same signal for
comparison. In Fig. 1f, the values are removed in the
middle between two threshold values. From Fig. 1b,
we can hardly see any changes of the DFA curves. To
make sure that the weaker long-term memory shown
in Fig. 1a is intrinsically originated, we also employ a
conventional methods, PSD analysis for our study. In
Fig. 1c, d, as expected, weaker long-term memory is
found in Fig. 1c, while nearly no change is in Fig. 1d.

To make a more complete description of our
findings, we repeat the experiment to artificial signals
with different scaling DFA exponents. In Fig. 2, the
scaling behaviors of all the long-term correlated signals
become weaker after the removing of extreme values,
but the difference varies. Obviously, the smaller the
original exponent is, the less it changes, as shown in
Fig. 2. When the signal is white noise, we even cannot
find any differences. According to our definition of
extreme events, we can always find extreme values,
which are the top 5% (or 10%) largest (or smallest) in
the record. The different changes we find in Fig. 2b may
indicate that positions of extreme values are also very
important to the long-term memory, which is related
to the idea of the clustering of extreme events. We
will give a more detailed discussion on this issue in
Section 4.

According to Fig. 2b, the highest difference for 5%
extreme value loss is only around 0.03. One may ques-
tion that although there are differences between the
two DFA curves, it seems too small. Can this difference
be a statistical error? To exclude this possibility, we cal-
culated the scaling exponents for signals with different
percentages of extreme value loss. In Fig. 3, the more
extreme values are removed, and the lower scaling
exponents are obtained. Similar decreasing trend can
also be found in the observational records. But if we
remove the values randomly, no significant difference
exists. Thus, we are more confident to say that the
changes of the long-term correlations are due to the loss
of extreme values.

To confirm our findings above, we use daily mean
temperature records from stations over China for fur-
ther analysis. For some stations, weaker scaling be-
haviors can arise after extreme values being removed,
as shown in Fig. 4a—c; the more extreme values re-
moved (up to 20%, as shown in Fig. 4), the smaller
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exponents obtained. Furthermore, results of 20 obser-
vational records are shown in Fig. 5, where we can see
a translation of the exponents values toward the left
side of the axis, as the number of the extreme value
loss becomes higher. However, not all the results from
observational records keep in line with this tendency.

Due to non-stationarity of the records and the resulting
crossovers in the DFA curve, results from observational
records are more complicated and difficult to reach a
reliable conclusion. See Fig. 4d, which is one of the
complicated cases we are interested to show. After
the removal of extreme values, we cannot find weaker
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Fig. 3 Scaling exponents for signals with different percentages of
extreme values removal and random values removal. The results
for both the artificial data and the observational records are
shown. More obvious changes can be found after more extreme
values are removed. In contrast, no changes can be found if the
values are removed randomly

correlations, but extended scaling range. To understand
this findings, we consider the original record and find
the fluctuation is asymmetric, with more extremely
low values exist. The removal of extreme events can
reduce the number of extremely low values and make

Fig. 4 Results for the 10>
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Fig. 5 Histogram of the Hurst exponents from 20 observational
records. The more extreme values are removed, the smaller the
exponents are; as shown in the figure, a remarkable translation of
the histogram toward left side can be found

the record more uniform and symmetric. As a result,
the scaling range of the DFA curve is extended to
small time scales. However, here is only a rough discus-
sion, and more studies on this issue are needed in the
future.

observational daily
temperature records are
shown. a—¢ are for Huma,
Kelamayi, and Jinghe, 10"t
respectively, where weaker
long-term memory can be
found after the removal of
extreme events. d is the 10°}
results for Xichang, which

a)
50353 Huma

F(s)

e original +

® 5% extreme values loss i

o 10% extreme values loss .l'

® 15% extreme values loss | ,°

. ® 20% extreme values loss

b) 51243 Kelamayi 2 ]
23

original E
5% extreme values loss ]
10% extreme values loss ]
15% extreme values loss {

does not show a weaker '|I|l
long-term memory, but an '
extension of the scaling range 102 } '
C) 51334 Jinghe
1
10 F
0
T

original +

10°F / .
[ ]

20% extreme yalues loss
T T T T E

) 56571 Xichang

" 5% extreme values loss i ® original b
'|| ® 10% extreme values loss 'l' ® 5% extreme values loss ]
.l ® 15% extreme values loss | * ® 10% extreme values loss J
10_1 , . ® 20% extreme .values loss X @ 15% extreme yalues loss
1 2 3 1 2 3
10 10 10 10 10 10
S

@ Springer



138

N. Yuan et al.

4 Discussion and conclusion
4.1 Discussion on the clustering of extreme events

The results above indicate that there should be close re-
lations between long-term memory and extreme events.
Combine with the interesting findings in previous work,
that return intervals of extreme events in records will
take similar long-term memory to that of the original
records and long-term memory may lead to a pro-
nounced clustering of extreme events, we can see that
positions of the extreme events may be very important.
Figure 6a shows the positions of extreme values we se-
lect to remove in one representative artificial long-term
correlated signal, where one can find the clustering of
extreme events easily. According to the work of Bunde
et al. (2004, 2005) and Eichner et al. (2007), we also
determine the probability density distribution of the
return intervals by considering a group (1,000 samples)
of artificial long-term correlated signals with length of
100,000 (five times as long as the artificial signals we
use in Section 3, for better numerical results). Not only
the return intervals of extreme values in both original
data and shuffled data (which long-term memory is
destroyed) but also the return intervals of middle values
as shown in Fig. 1 are considered. See Fig. 6b. As
expected, for long-term correlated records, larger prob-
abilities can be found for larger return intervals as well
as the smallest interval of 1, indicating a clustering of
the extreme events. Removal of these extreme events
means a damage to the old positions information, which
may change the fractal properties and further induce
weaker long-term memory. However, no significant

Fig. 6 a shows the positions

clustering can be found for the middle values, since the
probability density distribution is nearly the same with
that of the shuffled signals. This could be one reason
for the nearly unchanged long-term memory after the
removal of middle values, as shown in Fig. 1b, d. How-
ever, we would like to mention that the existence of
extreme values can also weaken the effect of the middle
value loss. For further understanding, we make a simple
numerical test here.

Consider a artificial long-term correlated signal of
length 20,000 and a moving window of 1,000 points
(a typical DFA scaling range when the records have
20,000 days), we estimate an quantity &, which is pro-
portional to the accumulations of the impacts from
1,000 points ahead. According to the power law auto-
correlation function C(s) ~ s77, ¢ is estimated as

| =00
S Xi(j+ 1,001 — )77,

%17 7,000 ; U+ 2
j=1,2,3,---,19,000 (2)

where X; is the signal we use in this test, which is
characterized with y = 0.4. Thus, a new series &7 (the
shoulder mark o denotes the original long-term corre-
lated record) of length 19,000 is obtained, which can
represents the memory accumulations. For comparison,
we also shuffle the signal to destroy its long-term mem-
ory, repeat the procedures above, and get anther series
& (the shoulder mark s denotes the shuffled record), as
shown in Fig. 7a. As expected, we can find remarkable
non-stationary with many clusterings of extremely high
or low values, when the original signal is long-term
correlated. However, surprisingly, the fluctuations of ¢}

10°
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can also show clustering of extreme events, although
the amplitude is smaller. See Fig. 7b, where the clus-
tering of extreme values are shown more clearly. This
indicates that, to some extent, the memory accumula-
tions we estimated from 1,000 points ahead, or more
precisely, the long-term memory, may induce clustering
of extreme events. By thinking about this findings in a
opposite direction, it may help us to understand why
removal of clustered extreme events can affect long-
term memories in the original signals. Thus, we should
be very careful when we deal with records with missing
points. Finding out reasons for the missing and estimat-
ing the probability that the missing values are extremely
high (or low) are essential in the future studies.

4.2 Conclusion

According to the results in Chen et al. (2002) and Ma
et al. (2010), it is known that the scaling behaviors
obtained from DFA are robust, even when up to 50%
of the points are lost in a considered record. In this
article, not contradict with the former work, we have
studied the effects of extreme value loss on long-term
correlated time series. We found that the removal of
extreme values can weaken the long-term memory in
both the artificial and observational time series. The
more extreme value loss, the weaker long-term memory
is. With the same percentage of extreme value loss, big-
ger changes can be found when the long-term memory
is stronger. However, situations for the observational
records are more complex. In some cases, the effect
of extreme value loss is reflected in the extension of
scaling range, which may be due to the asymmetric

10000
Row Numbers(j)

15000 0 50 100 150 200 250
Return intervals

distribution of the original records. In some other cases,
due to non-stationarity of the records and the resulting
crossovers in the DFA curve, we even cannot reach a
reliable conclusion. Thus, better methods are needed
for estimating the effect of extreme value loss in obser-
vational records.

By combining our findings with the previous work
of return intervals and clustering of extreme events,
we find close relations between extreme events and
long-term memory. In long-term correlated records,
extreme values are clustered. Removal of these clus-
tered extreme values may change the fractal properties
and further induce weaker long-term memory, which
indicates positions of the extreme values seems im-
portant. Meanwhile, from the simple numerical test
in Section 4.1, we can see that, to some extent, long-
term memory may induce clustering of extreme events.
These close relations require us to be very careful when
dealing with records with long-term memory, where
the extreme values may play an important role to any
statistical properties we obtained.

Furthermore, we would like to mention an interest-
ing work which has been published recently Mirzayof
and Ashkenazy (2010). After a threshold-based dilu-
tion (data points that are smaller than the threshold
are excluded) of exponentially distributed data, smaller
DFA exponents are obtained, but still larger than
0.5, which indicates that long-term memory are partly
preserved if only extreme values left in the record.
Our findings that the removal of extreme values may
weaken the long-term memory have contributed to this
issue from a new perspective. All in all, extreme events
have close relations with long-term memory.
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