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Abstract
Applying the Jacobi elliptic function expansion method to the (2 + 1)-dimensional breaking
soliton equations (BSE for short), we derive some types of exact solutions to the BSE. Based
on the derived solutions, we obtain some special structures, such as spatially localized or
periodic excitations. For specific choices, we show some features of the (2 + 1)-dimensional
BSE, such as breathers or breather lattice solutions.

PACS number: 04.20.Jb

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

In his paper [1], Kudryashov pointed out that one of the most
exciting recent advances in nonlinear science and theoretical
physics has been the development of methods to look for
exact solutions to nonlinear differential equations. Among
these methods, the homogeneous balance method [2], the
hyperbolic tangent function expansion method [3, 4], the
nonlinear transformation method [5, 6], the trial function
method [7, 8], the sine–cosine method [9], the Jacobi
elliptic function expansion method [10–12], the auxiliary
equation and mapping method [13, 14] and the Exp-function
method [15] have been widely applied to solve (1 + 1)-dimen-
sional nonlinear wave equations extensively, and (1 + 1)-
dimensional nonlinear wave equations have been studied quite
well, both in theoretical and in experimental aspects. For
(2 + 1)- and higher-dimensional equations, the situation is
less clear. Since there are more rich structures in (2 + 1)-
or higher-dimensional equations than in (1 + 1)-dimensional
equations, more work needs to be done to discover these new
structures.

1 Correspondence address: School of Physics, Peking University, Beijing
100871, People’s Republic of China.

In this paper, based on Jacobi elliptic functions and
the Lamé function [16–19], the Jacobi elliptic function
expansion method is applied to the (2 + 1)-dimensional
breaking soliton equations (BSE) to derive new solutions with
special structures.

2. Breaking soliton equations and special structures

The (2 + 1)-dimensional BSE

ut + βuxxy + 4βuvx + 4βuxv = 0, (1a)

u y = vx (1b)

describe the (2 + 1)-dimensional interaction of a Riemann
wave propagating along the y-axis with a long wave along
the x-axis. BSE have been studied in detail by many
researchers: Mei solved BSE by the projective Riccati
equation expansion method [20], Peng obtained two general
solutions to BSE by the singular manifold method [21],
Zhang constructed nontraveling wave solutions to BSE by a
generalized auxiliary equation method [22], and Dai derived
BSE chaotic behaviors by the mapping method [23]. The
structures of (2 + 1)-dimensional BSE are rich and there are
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Figure 1. A typical spatial structure of equation (9) (a) for m = 0.9
and (b) for m = 1.0.

still more structures to be discovered. Next we will show that
the Jacobi elliptic function expansion method can be applied
to solve BSE to derive more solutions that have not been
reported.

In order to solve equation (1), the following ansatz
solution,

u =

n1∑
i=0

ai F i , an1 6= 0, (2a)

v =

n2∑
i=0

bi F i , bn2 6= 0, (2b)

to BSE will be assumed, where ξ = kx + η, η = η(y, t), ai =

ai (y, t), bi = bi (y, t) and F is a solution to the elliptic
equation

F ′(ξ)2
=

[
dF

dξ

]2

= A0 + A2 F2 + A4 F4. (3)

Substituting equation (2) into (1) and balancing the
nonlinear term and dispersive term will result in

u = a0 + a1 F + a2 F2, a2 6= 0, (4a)

v = b0 + b1 F + b2 F2, b2 6= 0. (4b)

Figure 2. A typical spatial structure of equation (12) for m = 1.0.

From equations (1), (3) and (4), the expansion
coefficients can be determined as

a0 = constant, a1 = 0, a2 = −
3

2
k2 A4,

b0 = −
1

4βk
(ηt + 4βa0ηy + 4βk2 A2ηy), (5)

b1 = 0, b2 = −
3

2
k A4ηy,

where η = η(y, t) is an arbitrary function of t and y.
Owing to the arbitrariness of function η, we may obtain

a diversity of exact solutions to equation (1) by choosing
this function. From equation (5), one can see that there are
rich coherent structures for the field v. We will show that by
choosing a different F solution and arbitrary function η, more
special structures can be found.

For brevity, we will set the constant a0 as zero, so the
solution to v can be rewritten as

v = −
1

4βk
(ηt + 4βk2 A2ηy) −

3

2
k A4ηy F2. (6)

Case 1. If A0 =
1
4 , A2 = −

2−m2

2 , A4 =
m4

4 , then F takes the
solution

F =
sn(ξ, m)

1 + dn(ξ, m)
(7)

with the modulus 06 m 6 1 [24, 25].
If we select η as

η = e−(−y+t)2
, (8)

then it follows from equation (6) that

v =

[
1

2βk
+ k(2 − m2) −

3 km4 sn2(ξ, m)

4(1 + dn(ξ, m))2

]
(t − y)e−(y−t)2

(9)

with ξ = kx + η(y, t).
This is a new structure for BSE; figures 1(a) and (b)

show the structures for v(x, y, t) of equation (9), when the
parameter is chosen as

β = k = 1 (10)
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(a)
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Figure 3. A typical spatial structure of equation (14) (a) for
m = 0.5 and (b) for m = 1.0.

with m = 0.9 and m = 1.0 at t = 1, respectively. Obviously,
in the x-axis the solution maintains periodic behavior in
figure 1(a) and when m = 1 it is localized in figure 1(b).
Another feature is the obvious spatial breather behavior found
in figure 1(b).

Case 2. If F admits the same solution as (7), but η admits a
breather solution [26]

η =
sin(y + t)

cosh(2y + 2t)
, (11)

then it follows from equation (6) that

v = −
cos(y + t)cosh(2y + 2t) − 2 sin(y + t)sinh(2y + 2t)

cosh2(2y + 2t)

×

[
1

4βk
−

k(2 − m2)

2
+

3 km4 sn2(ξ, m)

8(1 + dn(ξ, m))2

]
(12)

with ξ = kx + η(y, t).
This is another new structure for BSE; figure 2 shows the

structure for v(x, y, t) of equation (12), when the parameter
is chosen as equation (10) with m = 1.0 at t = 1. Obviously,
in the x-axis the solution maintains solitonic behavior but
obvious spatial breather behavior is found in the y-axis.

(a)

(b)

Figure 4. A typical spatial structure of equation (16) (a) for
m = 0.5 and (b) for m = 1.0.

Case 3. If A0 = m2
− 1, A2 = 2 − m2, A4 = −1, then F takes

the solution

F = dn(ξ, m) (13)

with the modulus 06 m 6 1. If η admits a breather solution
as equation (11), then it follows from equation (6) that

v = −
cos(y + t)cosh(2y + 2t) − 2 sin(y + t)sinh(2y + 2t)

cosh2(2y + 2t)

×

[
1

4βk
+ k(2 − m2) −

3kdn2(ξ, m)

2

]
(14)

with ξ = kx + η(y, t).
This is another new structure for BSE; figures 3(a) and

(b) show the structures for v(x, y, t) of equation (14), when
the parameter is chosen as equation (10) with m = 0.5 and
m = 1.0 at t = 1, respectively. Obviously, the feature shown
in figure 3(b) is different from that given in figure 2; this is a
new structure.

Case 4. If F admits the same solution as (13), but η admits a
breather lattice solution [27]

η = dn(y + t, m) sn(2y + 2t, m), (15)
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(a)

(b)

Figure 5. A typical spatial structure of equation (18) (a) for
m = 0.5 and (b) for m = 1.0.

then it follows from equation (6) that

v = [2dn(y + t, m)cn(2y + 2t, m)dn(2y + 2t, m)

− m2sn(y + t, m)cn(y + t, m)sn(2y + 2t, m)]

×

[
−

1

4βk
+ k(2 − m2) +

3kdn2(ξ, m)

2

]
(16)

with ξ = kx + η(y, t).
This is another new structure for BSE; figures 4(a)

and (b) show the structures for v(x, y, t) of equation (16),
when the parameter is chosen as equation (10) with m = 0.5
and m = 1.0 at t = 1, respectively. Obviously, the feature
shown in figure 4(a) is periodic in both the x- and y-axis,
and maintains breather lattice structures in the y-axis. If
the breather lattice solution (15) is changed to η = dn(y +
t, m) sn(y + t, m), which is a kind of Lamé function [16–19],
or other kinds of Lamé function [16–19], a similar structure
can still be found.

(a)

(b)

Figure 6. A typical spatial structure of equation (20) (a) for
m = 0.5 and (b) for m = 1.0.

Case 5. If F admits the same solution as (13), but η admits
another kind of breather solution [28]

η = 4 tan−1

[
sin(y + t)

cosh(2y + 2t)

]
, (17)

then it follows from equation (6) that

v =
1

βk
[cos(y − t)cosh(y + t) + sin(y − t) sinh(y + t)]

− [4k(2 − m2) − 6kdn2(ξ, m)][cos(y − t))

× cosh(y + t) − sin(y − t) sinh(y + t)] (18)

with ξ = kx + η(y, t).
This is another new structure for BSE; figures 5(a) and

(b) show the structures for v(x, y, t) of equation (18), when
the parameter is chosen as equation (10) with m = 0.5 and
m = 1.0 at t = 1, respectively. Obviously, the features shown
in figures 5(a) and (b) are different from those given in
figures 3(a) and (b).

Case 6. If F admits the same solution as (13), but η admits a
soliton solution

η = sech(y + t), (19)
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then it follows from equation (6) that

v = sech(y + t)tanh(y + t)

×

[
−

1

4βk
+ k(2 − m2) +

3kdn2(ξ, m)

2

]
(20)

with ξ = kx + η(y, t).
This is another new structure for BSE; figures 6(a) and

(b) show the structures for v(x, y, t) of equation (20), where
the parameter is chosen as equation (10) with m = 0.5 and
m = 1.0 at t = 1, respectively. Obviously, the feature shown in
figure 6(a) is periodic in the x-axis and maintains band soliton
structure in the y-axis.

3. Conclusion and discussion

In this paper, the Jacobi elliptic function expansion method
has been applied to the (2 + 1)-dimensional BSE, and certain
special structures have been obtained because of the existence
of arbitrary function η(y, t). This indicates that the Jacobi
elliptic function expansion method is a powerful method
not only in (1 + 1)-dimensional nonlinear equations but
also in (2 + 1)-dimensional or higher-dimensional nonlinear
equations. More applications of this method to other (2 + 1)-
dimensional or higher-dimensional nonlinear equations in
order to derive more new structures need to be studied further.

Acknowledgment

We acknowledge support from the National Natural Science
Foundation of China (no. 40975027).

References

[1] Kudryashov N A 2005 Chaos Solitons Fractals 24 1217–31
[2] Wang M L 1995 Phys. Lett. A 199 169–72

[3] Fan E G 2000 Phys. Lett. A 277 212–8
[4] Wazwaz A-M 2006 Physica D 213 147
[5] Hirota R 1973 J. Math. Phys. 14 810–4
[6] Otwinowski M, Paul R and Laidlaw W G 1988 Phys. Lett. A

128 483–7
[7] Kudryashov N A 1990 Phys. Lett. A 147 287–91
[8] Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Appl. Math. Mech.

22 326–31
[9] Yan C T 1996 Phys. Lett. A 224 77–84

[10] Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Phys. Lett. A
289 69–74

[11] Fu Z T, Liu S K, Liu S D and Zhao Q 2001 Phys. Lett. A
290 72–6

[12] Dou F Q et al 2006 Commun. Theor. Phys. 45 1063
[13] Sirendaoreji and Sun J 2003 Phys. Lett. A 309 387–96
[14] Liu X P and Liu C P 2009 Chaos Solitons Fractals

39 1915–9
[15] He J H and Wu X H 2006 Chaos Solitons Fractals

30 700–6
[16] Wang Z X and RGuo D 1989 Special Functions (Singapore:

World Scientific)
[17] Liu S K and Liu S D 2000 Nonlinear Equations in Physics

(Beijing: Peking University Press)
[18] Liu G T 2009 Appl. Math. Comput. 212 312
[19] Fu Z T, Yuan N M, Mao J Y and Liu S K 2009 Phys. Lett. A

374 214
[20] Mei J Q and Zhang H Q 2004 Chaos Solitons Fractals

20 771
[21] Peng Y Z and Krishnan E V 2005 Commun. Theor. Phys.

44 807
[22] Zhang S 2007 Phys. Lett. A 368 470
[23] Dai C Q and Zhang J F 2009 Chaos Solitons Fractals

39 889
[24] Fu Z T, Lin G X, Liu S K and Liu S D 2005 Commun. Theor.

Phys. 44 235
[25] Fu Z T, Liu S K and Liu S D 2005 Chaos Solitons Fractals

24 383
[26] Lamb G L Jr 1980 Elements of Soliton Theory (New York:

Wiley)
[27] Fu Z T, Liu S D and Liu S K 2007 J. Phys. A: Math. Theor.

40 4739
[28] Fu Z T, Liu S D and Liu S K 2007 Phys. Scr. 76 15

5

http://dx.doi.org/10.1016/j.chaos.2004.09.109
http://dx.doi.org/10.1016/0375-9601(95)00092-H
http://dx.doi.org/10.1016/S0375-9601(00)00725-8
http://dx.doi.org/10.1016/j.physd.2005.09.018
http://dx.doi.org/10.1063/1.1666400
http://dx.doi.org/10.1016/0375-9601(88)90880-8
http://dx.doi.org/10.1016/0375-9601(90)90449-X
http://dx.doi.org/10.1023/A:1015514721870
http://dx.doi.org/10.1016/S0375-9601(96)00770-0
http://dx.doi.org/10.1016/S0375-9601(01)00580-1
http://dx.doi.org/10.1016/S0375-9601(01)00644-2
http://dx.doi.org/10.1088/0253-6102/45/6/021
http://dx.doi.org/10.1016/S0375-9601(03)00196-8
http://dx.doi.org/10.1016/j.chaos.2007.06.093
http://dx.doi.org/10.1016/j.chaos.2007.06.093
http://dx.doi.org/10.1016/j.chaos.2006.03.020
http://dx.doi.org/10.1016/j.chaos.2006.03.020
http://dx.doi.org/10.1016/j.amc.2009.02.022
http://dx.doi.org/10.1016/j.physleta.2009.10.055
http://dx.doi.org/10.1016/j.chaos.2003.08.007
http://dx.doi.org/10.1016/j.chaos.2003.08.007
http://dx.doi.org/10.1088/6102/44/5/807
http://dx.doi.org/10.1088/6102/44/5/807
http://dx.doi.org/10.1016/j.physleta.2007.04.038
http://dx.doi.org/10.1016/j.chaos.2007.01.063
http://dx.doi.org/10.1016/j.chaos.2007.01.063
http://dx.doi.org/10.1088/6102/44/2/235
http://dx.doi.org/10.1088/1751-8113/40/18/005
http://dx.doi.org/10.1088/1751-8113/40/18/005
http://dx.doi.org/10.1088/0031-8949/76/1/003

	1. Introduction
	2. Breaking soliton equations and special structures
	3. Conclusion and discussion
	Acknowledgment
	References



