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a b s t r a c t

In this paper, the singular manifold method is applied to search coherent structures in an
analytical form for the coupled integrable dispersionless equations. The Generalized solu-
tions have been derived to the coupled integrable dispersionless equations, where the solu-
tions are determined by the singular variable totally. With the aid of symbolic computation
and plot representation of Maple, some coherent structures expressed in terms of new
forms, such as solitoffs and breather lattice structures, have been illustrated by means of
arbitrary functions in the analytical forms.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

For the following coupled integrable dispersionless equations [1]

uxt þ ðvwÞx ¼ 0; ð1aÞ
vxt � 2vux ¼ 0; ð1bÞ
wxt � 2wux ¼ 0: ð1cÞ

Konno and co-workers [1] have shown that the coupled system is solvable by using the inverse scattering method. Similar
property was found by Alagesan and co-workers [2] when they investigated the singularity structure analysis of these cou-
pled system and found that these system possesses the Painlevé property by the method of singular manifold analysis [3].

Recently, Naranmandula et al. [4], Dai et al. [5], and Liu et al. [6] have obtained some exact solutions and constructed
some coherent structures by the method of improved homogeneous balance, exp-function and Riccati equation mixed meth-
od and Jacobi elliptic function expansion method, respectively. The existence of these different coherent structures also tells
us that there are still more new coherent structures in the (1 + 1)-dimensional systems can be found, since many methods
have been proposed and widely applied to solve (1 + 1)-dimensional nonlinear wave equations extensively [7–16], and these
methods can also be applied to find more coherent structures in the (1 + 1)-dimensional systems. For example, the singular
manifold analysis [3] has been used widely to analyze the integrability of nonlinear systems, (1 + 1)-dimensional, (2 + 1)-
dimensional or higher dimensional. In fact, this method has been extended by Peng and his co-workers [17–20] to construct
the localized solutions, such as dromions [21,22] and solitoffs [23] in the (2 + 1) or higher dimensional nonlinear systems and
it is shown that the singular manifold method is powerful in this direction. In this paper, we will take the coupled integrable
dispersionless Eqs. (1) as an example to show there are more coherent structures in the (1 + 1)-dimensional systems by
applying the singular manifold method [3] in details.

1007-5704/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cnsns.2011.10.024

⇑ Corresponding author. Tel.: +86 010 62767184; fax: +86 010 62751094.
E-mail address: fuzt@pku.edu.cn (Z. Fu).

Commun Nonlinear Sci Numer Simulat 17 (2012) 2362–2371

Contents lists available at SciVerse ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns



Author's personal copy

2. The analytical solutions to the coupled integrable dispersionless equations

According to the singular manifold method [3], the solutions to the coupled integrable dispersionless Eqs. (1) can be
truncated as

u ¼ /�1u0 þ u1; ð2aÞ
v ¼ /�1v0 þ v1; ð2bÞ
w ¼ /�1w0 þw1; ð2cÞ

where / = /(x, t) is the singular manifold variable, ui = ui(x, t), vi = vi(x, t), and wi = wi(x, t), i = 0,1.
Substituting Eq. (2) into Eq. (1) and equating the coefficients with the same powers of /, one gets

u0 ¼ �/t; ð3aÞ
v0w0 ¼ �/2

t ð3bÞ

and u1, v1 and w1 satisfy the Eq. (1), similar results have been found by Alagesan and Porsezian [2].
Since many studies [4,6] have found that v is proportional to w, here we take

v0 ¼ a/t ; w0 ¼ �
1
a

/t; ð4Þ

where a is a non-zero constant.
Substituting (3) and (4) back into other equations for coefficients with the same powers of /, one gets

u1 ¼
/tt

2/t
þ hðtÞ; ð5aÞ

v1 ¼ �
a/tt

2/t
; ð5bÞ

w1 ¼
/tt

2a/t
; ð5cÞ

where h(t) is an arbitrary function and / satisfies the following equation

/tt

/t

� �
xt
� /tt

/t

� �
/tt

/t

� �
x
¼ 0; ð6Þ

i.e.

/tt

/t

� �
t
¼ 1

2
/tt

/t

� �2

þ gðtÞ; ð7Þ

where g(t) is another arbitrary function.
If / satisfies (6) or (7), then the solution to Eq. (1) can be written as

u ¼ �/t

/
þ /tt

2/t

� �
þ hðtÞ; ð8aÞ

v ¼ �a �/t

/
þ /tt

2/t

� �
; ð8bÞ

w ¼ 1
a
�/t

/
þ /tt

2/t

� �
: ð8cÞ

As mentioned in Ref. [3], if the arbitrary function / takes a separable form, then (6) can be solved. For any given /, we can
derive (8), generalized analytical solutions for Eq. (1). For example, if / takes the following separable form

/ ¼ RðtÞ þ f ðxÞ; ð9Þ

where R(t) and f(x) are two arbitrary functions. It is easy to check that / satisfies (6), and then the solution to Eq. (1) can be
written as

u ¼ � Rt

RðtÞ þ f ðxÞ þ
Rtt

2Rt
þ hðtÞ; ð10aÞ

v ¼ �a � Rt

RðtÞ þ f ðxÞ þ
Rtt

2Rt

� �
; ð10bÞ

w ¼ 1
a
� Rt

RðtÞ þ f ðxÞ þ
Rtt

2Rt

� �
: ð10cÞ
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Another example, if / takes the following separable form

/ ¼ f ðxÞ½RðtÞ þ qðxÞ�; ð11Þ

where R(t), f(x) and q(x) are three arbitrary functions. It is easy to check that / satisfies (6), and then the solution to Eq. (1)
can be written as the same result as (10), which is totally determined by the singular variable /.

In the following part, we will show that different choices of arbitrary functions of R(t) and f(x) for separable / will result in
more coherent structures.

3. Different coherent structures

In the last section, we can see that the solution to Eq. (1) is totally determined by the singular variable /, whose two arbi-
trary functions R(t) and f(x) will be mainly in charge of the coherent structures of Eq. (1).

Thanks to the arbitrariness of functions R(t) and f(x), we may obtain a diversity of exact solutions to Eq. (1) by choosing
these functions. For brevity, we only show the results for u.

Fig. 1. Spatiotemporal evolution of a typical shock wave of Eq. (12).

Fig. 2. The spatiotemporal evolution of field u in Eq. (13) takes the pattern of solitoff and anti-solitoff with harmonic motions.
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Fig. 3. Spatiotemporal evolution plot of kink wave and anti-kink wave reflection for Eq. (14) (a) and the snapshots at time (b) t = 0 (c) t = 10 (d) t = �10.
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Fig. 4. Spatiotemporal evolution plot of kink and anti-kink interaction for Eq. (15) (a) and the snapshots at time (b) t = 0.5 (c) t = �0.5 (d) t = 10 (e) t = �10.
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Case 1: If f(x) = ex, R(t) = et and h(t) = 0, then the solution to u in Eq. (1) can be expressed as

u ¼ � et

et þ ex
þ 1

2
: ð12Þ

In this case, field u is a typical shock wave, its spatiotemporal evolution is shown in Fig. 1.
Case 2: If

f ðxÞ ¼ sech ðxÞ;RðtÞ ¼ e�t2 and hðtÞ ¼ � Rtt
2Rt

, then the solution to u in Eq. (1) can be expressed as

u ¼ 2te�t2

e�t2 þ sech ðxÞ
: ð13Þ

Fig. 5. Spatiotemporal evolution plot of vanishing shock wave type soliton for Eq. (16).

Fig. 6. Spatiotemporal evolution plot of flat-top soliton for Eq. (17).
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In this case, the spatiotemporal evolution of field u takes the pattern of solitoff and anti-solitoff with harmonic motions,
which is illustrated in Fig. 2.
Case 3: If

f(x) = ex, R(t) = sech (t) and hðtÞ ¼ � Rtt
2Rt

, then the solution to u in Eq. (1) can be expressed as

u ¼ sech ðtÞ tanhðtÞ
sech ðtÞ þ ex

: ð14Þ

In this case, field u takes the reflection coherent structure, its spatiotemporal evolution plot of kink wave and anti-kink wave
reflection is given in Fig. 3, where a traveling kink wave reflects at x = 0 and then becomes an anti-kink wave.
Case 4: If

f(x) = sech(x), R(t) = sech(t) and hðtÞ ¼ � Rtt
2Rt

, then the solution to u in Eq. (1) can be expressed as

u ¼ sech ðtÞ tanhðtÞ
sech ðtÞ þ sechx

: ð15Þ

In this case, field u takes the interaction coherent structure, its spatiotemporal evolution plot of kink wave and anti-kink
wave interaction is depicted in Fig. 4, where a traveling kink wave heads on and collides with anti-kink wave.
Case 5: If

f(x) = 1 + ex, R(t) = et and h(t) = 0, then the solution to u in Eq. (1) can be expressed as

u ¼ � et

1þ et þ ex
þ 1

2
: ð16Þ

In this case, field u is a typical vanishing shock wave, its spatiotemporal evolution is shown in Fig. 5.
Case 6: If

f(x) = 1 + 500sech(x), R(t) = et and h(t) = 0, then the solution to u in Eq. (1) can be expressed as

u ¼ � et

1þ et þ 500sech ðxÞ þ
1
2
: ð17Þ

In this case, field u takes flat-top soliton pattern, its spatiotemporal evolution is shown in Fig. 6.
Case 7: If

f(x) = 1 + ex, R(t) = sech(t) and hðtÞ ¼ � Rtt
2Rt

, then the solution to u in Eq. (1) can be expressed as

u ¼ sech ðtÞ tanhðtÞ
1þ sech ðtÞ þ ex

: ð18Þ

Fig. 7. The spatiotemporal evolution of field u in Eq. (18) takes the pattern of solitoff and anti-solitoff.
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In this case, the spatiotemporal evolution of field u takes the pattern of solitoff and anti-solitoff, which is illustrated in Fig. 7.
Case 8: If

f(x) = 2.5 + sn(x,m), R(t) = sn(t,m) and hðtÞ ¼ � Rtt
2Rt

, then the solution to u in Eq. (1) can be expressed as

u ¼ � cnðt;mÞdnðt;mÞ
2:5þ snðt;mÞ þ snðx;mÞ ; ð19Þ

where sn(y,m), cn(y,m) and dn(y,m) are the Jacobi elliptic sine function, the Jacobi elliptic cosine function and the Jacobi
elliptic function of the third kind with its modulus m (0 < m < 1) [24,25], respectively.
In this case, the spatiotemporal evolution of field u takes the pattern of solitoff and line soliton interaction at m = 1, which is
illustrated in Fig. 8a and breather lattice structure at m = 0.5 [26,27], which is illustrated in Fig. 8b.

Fig. 8. The spatiotemporal evolution of field u in Eq. (19) takes the pattern of solitoff and line soliton interaction at m = 1, (a) and breather lattice structure
at m = 0.5 (b).
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Case 9: If f ðxÞ ¼ 1þ ex;RðtÞ ¼ sinðtÞ
coshðtÞ and hðtÞ ¼ � Rtt

2Rt
, then the solution to u in Eq. (1) can be expressed as

u ¼ cosðtÞ coshðtÞ � sinðtÞ sinhðtÞ
sinðtÞ coshðtÞ þ ð1þ exÞ coshðtÞ2

: ð20Þ

In this case, the spatiotemporal evolution of field u takes the pattern of anti-solitoff, solitoff and anti-solitoff, which is
illustrated in Fig. 9.

4. Conclusion and discussion

In this paper, the singular manifold method is applied to the (1 + 1)-dimensional nonlinear systems, certain special coher-
ent structures have been obtained because of the existence of arbitrary functions in singular variable /. For the coupled inte-
grable dispersionless equations, its solutions are totally determined by the singular variable /, which has two or three
arbitrary functions. When these arbitrary functions take different analytical forms, more different coherent structures can
be presented, some of them are new and unreported in the literature. So more applications of this method to other nonlinear
systems, (1 + 1)-dimensional, (2 + 1)-dimensional or higher dimensional nonlinear equations to derive more new structures
deserves to be studied further.
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