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Abstract

The Jacobi elliptic function expansion (JEFE) method is applied to construct the exact periodic solutions

to two kinds of nonlinear wave equations, such as BBM equation, fifth-order dispersive equation,

Kawahara equation, modified Kawahara equation, second-order BO equation and symmetrical-regular

long wave equation. The corresponding shock wave solutions or solitary wave solutions are obtained as

special cases of the periodic solutions. It is shown that this method is very powerful for some nonlinear

wave equations, and its applying domain is given.
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1. Introduction

In Ref. [1], the Jacobi elliptic function expansion (JEFE) method was proposed to construct
periodic solutions to some nonlinear wave equations. It is interesting that solutions in their limit
obtained by this method, the shock or solitary wave solutions, are just the same as the results
given by a number of methods, such as the homogeneous balance method [2–4], the hyperbolic
tangent expansion method [5–7], the nonlinear transformation method [8,9], the trial function
method [10,11] and sine–cosine method [12]. Among these methods, none deals with special
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functions. Actually, the hyperbolic tangent expansion method is just a special case of JEFE
method under certain conditions. Although Porubov et al. [13–15] have obtained some exact
periodic solutions to some nonlinear wave equations, they used the Weierstrass elliptic function
and involved complicated deducing. In this paper, the details and the applying domains of JEFE
method are discussed, and periodic solutions and corresponding limited solutions are obtained for
some nonlinear wave equations.

2. JEFE method and its applying domain

Consider a given nonlinear wave equation

Nðu; ut; ux; utt; uxx; . . .Þ ¼ 0; ð1Þ
its traveling wave solutions take the following form:

u ¼ uðnÞ; n ¼ kðx� ctÞ; ð2Þ
which can be expressed as a finite series of Jacobi elliptic function, snn, by JEFE method

uðnÞ ¼
Xn

j¼0

ajsnjn; ð3Þ

where k and c are the wavenumber and wave speed, respectively. It is known that there are the
following relations between the elliptic functions:

cn2n ¼ 1� sn2n; dn2n ¼ 1� m2sn2n; ð4Þ
d

dn
snn ¼ cnndnn;

d

dn
cnn ¼ �snndnn;

d

dn
dnn ¼ �m2snncnn;

where cnn and dnn are the Jacobi elliptic cosine function and the Jacobi elliptic function of the
third kind, respectively, and m is the modulus ð0 < m < 1Þ.

We have

du
dn

¼
Xn

j¼0

ðjajsnj�1nÞcnndnn; ð5Þ

d2u

dn2
¼

Xn

j¼0

½ðj� 1Þjajsnj�2n � ð1þ m2Þj2ajsnjn þ m2ðjþ 1Þjajsnjþ2n�; ð6Þ

d3u

dn3
¼

Xn

j¼0

½ðj� 2Þðj� 1Þjajsnj�3n � ð1þ m2Þj3ajsnj�1n þ m2ðjþ 2Þðjþ 1Þjajsnjþ1n�cnndnn;

ð7Þ

d4u

dn4
¼

Xn

j¼0

fðj� 3Þðj� 2Þðj� 1Þjajsnj�4n � 2ð1þ m2Þðj2 � 2jþ 2Þðj� 1Þjajsnj�2n

þ ½2m2ðj2 þ 5Þ þ ð1þ m2Þ2j2�j2ajsnjn � m2ð1þ m2Þjðjþ 1Þ½j2 þ ðjþ 2Þ2�ajsnjþ2n

þ m4ðjþ 3Þðjþ 2Þðjþ 1Þjajsnjþ4ng; ð8Þ
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d5u

dn5
¼

Xn

j¼0

fðj� 4Þðj� 3Þðj� 2Þðj� 1Þjajsnj�5n � 2ð1þ m2Þðj2 � 2jþ 2Þðj� 2Þðj� 1Þjajsnj�3n

þ ½2m2ðj2 þ 5Þ þ ð1þ m2Þ2j2�j3ajsnj�1n � m2ð1þ m2Þjðjþ 1Þðjþ 2Þ


 ½j2 þ ðjþ 2Þ2�ajsnjþ1n þ m4ðjþ 4Þðjþ 3Þðjþ 2Þðjþ 1Þjajsnjþ3ngcnndnn: ð9Þ

It is obvious that the factor cnndnn exits only in the odd derivative terms, so there is good
alternate formalism between odd and even derivative terms, i.e.

dð2mÞu

dnð2mÞ ¼ fmðsnnÞ; dð2mþ1Þu

dnð2mþ1Þ ¼ gmðsnnÞcnndnn; m ¼ 0; 1; 2; . . .

Here, we define d0u=dn0 ¼ uðnÞ, fmðsnnÞ and gmðsnnÞ are m-order polynomials in term of snn,
respectively.

The highest power order of uðnÞ is equal to n, i.e.

OðuðnÞÞ ¼ n; ð10Þ

and the highest power order of du=dn can be taken as

O
du
dn

� �
¼ nþ 1:

We have

O u
du
dn

� �
¼ 2nþ 1; O

d2u

dn2

� �
¼ nþ 2; O

d3u

dn3

� �
¼ nþ 3: ð11Þ

If every sum of derivative order of every term in the Eq. (1) is odd or even synchronously, we
can select n in (3) to balance the highest order of derivative term and nonlinear term in Eq. (1).
Thus we can obtain the finite series periodic solutions to this kind of equations. Actually, the
number of this kind of equations is very large. Such as KdV equation, mKdV equation, Benja-
min–Bona–Mahony (BBM) equation, modified BBM equation, fifth-order dispersive equation,
Kawahara equation, modified Kawahara equation, ð2iþ 1Þ-order KdV equation, every sum of
derivative order of every term is odd in all these equations. And for Boussinesq equation, non-
linear Klein–Gordon equation, symmetrical-regular long wave equation, second-order Benjamin–
Ono (BO) equation, Bretherton equation, every sum of derivative order of every term is even in all
these equations.

Therefore, the equations mentioned above can be classified as follows: the equations, whose
sum of derivative order of every term is odd, are set as the first kind; and the equations, whose
sum of derivative order of every term is even, are set as the second kind. In Sections 3 and 4, we
illustrate the applications of JEFE method to these two kinds of nonlinear wave equations.

It is known that snn ! tanh n when m ! 1, thus (3) degenerates as the following form:

uðnÞ ¼
Xn

j¼0

aj tanh
j n:

So we can also obtain solitary or shock wave solutions by using JEFE method.
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3. Applications to the first kind of equations

3.1. Benjamin–Bona–Mahony (BBM) equation

ou
ot

þ c0
ou
ox

þ u
ou
ox

þ p
o3u
otox2

¼ 0: ð12Þ

Substituting (2) into (12), we have

ðc0 � cÞ du
dn

þ u
du
dn

� pck2
d3u

dn3
¼ 0: ð13Þ

Thus we can deduce from (10) and (11) that

O u
du
dn

� �
¼ 2nþ 1; O

d3u

dn3

� �
¼ nþ 3:

Balance of these orders gives

n ¼ 2:

So the BBM Eq. (12) may have the following form travelling wave solution

uðnÞ ¼ a0 þ a1snn þ a2sn2n ð14Þ

and from (14), (5) and (7), we have

du
dn

¼ ða1 þ 2a2snnÞcnndnn; ð15Þ

u
du
dn

¼ ½a0a1 þ ða21 þ 2a0a2Þsnn þ 3a1a2sn2n þ 2a22sn
3n�cnndnn; ð16Þ

d3u

dn3
¼ ½�ð1þ m2Þa1 � 8ð1þ m2Þa2snn þ 6m2a1sn2n þ 24m2a2sn3n�cnndnn: ð17Þ

Substituting (15)–(17) into (13) yields

ðc0 � cÞa1 þ a0a1 þ ð1þ m2Þpck2a1 ¼ 0;

2ðc0 � cÞa2 þ ða21 þ 2a0a2Þ þ 8ð1þ m2Þpck2a2 ¼ 0;

a1a2 � 2m2pck2a1 ¼ 0;

a22 � 12m2pck2a2 ¼ 0:

Thus we can determine the coefficients

a1 ¼ 0; a2 ¼ 12m2pck2; a0 ¼ c� c0 � 4ð1þ m2Þpck2; ð18Þ
where k and c are arbitrary constants.
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Substituting (18) into (14), a final solution is

u ¼ c� c0 � 4ð1þ m2Þpck2 þ 12m2pck2sn2kðx� ctÞ; ð19Þ
which is the exact periodic solution of BBM Eq. (12).

Taking m ¼ 1, then (19) is reduced to

u ¼ c� c0 � 8pck2 þ 12pck2 tanh2 n;

which is the solitary wave solution of BBM equation.
Similarly, this method can be applied to other equations of the first kind.

3.2. Fifth-order dispersive equation

ou
ot

þ p
ou
ox

o2u
ox2

þ q
o5u
ox5

¼ 0:

It is easily determined that its ansatz solution is (14), too. Applying (14), (5), (6) and (9), we can
determine that

a1 ¼ 0; a2 ¼ � 60qm2k2

p
; c ¼ 16qk4ð1� m2 þ m4Þ;

where k and a0 are arbitrary constants.
The periodic solution of fifth-order dispersive equation can be written as

u ¼ a0 �
60qm2k2

p
sn2k½x� 16qk4ð1� m2 þ m4Þt�

and its corresponding solitary wave solution is

u ¼ a0 �
60qk2

p
tanh2 k½x� 16qk4t�:

It is obvious that sum of derivative order of every term in ð2iþ 1Þ-order KdV or mKdV equation

ou
ot

þ c1ul
ou
ox

þ
XM
i¼1

c2iþ1

oð2iþ1Þu
oxð2iþ1Þ ¼ 0; M ¼ 1; 2; 3; . . . ð20Þ

is odd, so JEFE method can be easily applied to it. In Section 3.3, we will show detailed appli-
cations to ð2iþ 1Þ-order KdV or mKdV equation, including Kawahara equation, modified
Kawahara equation.

3.3. Kawahara equation

ou
ot

þ u
ou
ox

þ p
o3u
ox3

þ q
o5u
ox5

¼ 0: ð21Þ

Obviously, here l ¼ 1 and M ¼ 2 in (20). Its ansatz solution is

uðnÞ ¼ a0 þ a1snn þ a2sn2n þ a3sn3n þ a4sn4n: ð22Þ
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Substituting (22) into (21) leads to the following solution

u ¼ c� pk2
936qm2k2

p � 52ð1þ m2Þqk2

�
� 4ð1þ m2Þ

�
� qk4 72m2

�
þ 16ð1þ m2Þ2

� 18720qm2ð1þ m2Þk2
p � 52ð1þ m2Þqk2

�
� 1680qm4k4sn4kðx� ctÞ

� 280m2k2½p � 52ð1þ m2Þqk2�
13

sn2kðx� ctÞ; ð23Þ

which is the exact periodic solution of Kawahara equation (21).
Taking m ¼ 1, then (23) is reduced to

u ¼ c� 69p2

169q
þ 210p2

169q
tanh2

�
�

ffiffiffiffiffiffiffiffi�p
52q

r
ðx� ctÞ

�
� 105p2

169q
tanh4

�
�

ffiffiffiffiffiffiffiffi�p
52q

r
ðx� ctÞ

�
;

which is the solitary wave solution of Kawahara equation, and k2 ¼ �p=52q.

3.4. Modified Kawahara equation

ou
ot

þ u2
ou
ox

þ p
o3u
ox3

þ q
o5u
ox5

¼ 0; ð24Þ

here l ¼ 2 and M ¼ 2, and it is easily determined that n ¼ 2 and its ansatz solution is (14).
Substituting (14) into (24) yields the following result

u ¼ � 20qð1þ m2Þk2 � pffiffiffiffiffiffiffiffiffiffiffi
�10q

p � 6
ffiffiffiffiffiffiffiffiffiffiffi
�10q

p
m2k2sn2kðx� ctÞ

and its corresponding solitary wave solution is

u ¼ � 40qk2 � pffiffiffiffiffiffiffiffiffiffiffi
�10q

p � 6
ffiffiffiffiffiffiffiffiffiffiffi
�10q

p
k2 tanh2 k x

�
� 1

�
� p2

10q
� 24qk4

�
t
�
:

4. Applications to the second kind of equations

4.1. Second-order Benjamin–Ono equation

o2u
ot2

þ q
o2u2

ox2
þ r

o4u
ox4

¼ 0: ð25Þ

Its ansatz solution is (14). Applying (5), (6) and (8), we have

d2u

dn2
¼ ½2a0a1 þ ð2a21 þ 4a0a2Þsnn þ 6a1a2sn2n þ 4a22sn

3n�cnndnn; ð26Þ

d4u

dn4
¼ �8ð1þ m2Þa2 þ ½ð1þ m2Þ2 þ 12m2�a1snn þ 8½2ð1þ m2Þ2 þ 9m2�a2sn2n

� 20m2ð1þ m2Þa1sn3n � 120m2ð1þ m2Þa2sn4n þ 24m4a1sn5n þ 120m4a2sn6n; ð27Þ
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d2u2

dn2
¼ 2ða21 þ 2a0a2Þ � 2½ð1þ m2Þa0 � 6a2�a1snn � 4½ð1þ m2Þa21 þ 2ð1þ m2Þa0a2 � 3a22�sn2n

þ 2½2m2a0 � 9ð1þ m2Þa2�a1sn3n þ 2½3m2a21 þ 6m2a0a2 � 8ð1þ m2Þa22�sn4n

þ 24m2a1a2sn5n þ 20m2a22sn
6n: ð28Þ

Substituting (26)–(28) into (25) yields

2c2a2 þ 2qða21 þ 2a0a2Þ � 4rk2ð1þ m2Þa2 ¼ 0;

ð1þ m2Þc2a1 þ 2q½ð1þ m2Þa0 � 6a2�a1 � rk2½ð1þ m2Þ2 þ 12m2�a1 ¼ 0;

c2ð1þ m2Þa2 þ q½ð1þ m2Þ2a21 þ 2ð1þ m2Þa0a2 � 3a22� � 2rk2½2ð1þ m2Þ2 þ 9m2�a2 ¼ 0;

c2m2a1 þ q½2m2a0 � 9ð1þ m2Þa2�a1 � 10rk2m2ð1þ m2Þa1 ¼ 0;

3c2m2a2 þ q½3m2a21 þ 6m2a0a2 � 8ð1þ m2Þa22� � 60rk2m2ð1þ m2Þa2 ¼ 0;

qm2a1a2 þ rk2m4a1 ¼ 0;

qm2a22 þ 6rk2m4a2 ¼ 0;

from which it is determined that

a1 ¼ 0; a2 ¼ � 6rm2k2

q
; a0 ¼

4ð1þ m2Þrk2 � c2

2q
;

where c and k are arbitrary constants. Thus the periodic solution of (25) is

u ¼ 4ð1þ m2Þrk2 � c2

2q
� 6rm2k2

q
sn2kðx� ctÞ;

its corresponding solitary wave solution is

u ¼ 8rk2 � c2

2q
� 6rk2

q
tanh2 kðx� ctÞ:

4.2. Symmetrical-regular long wave equation

o2u
ot2

þ p
o2u
ox2

þ q
o2u2

otox
þ r

o4u
ot2ox2

¼ 0: ð29Þ

Its ansatz solution is (14).
Substituting (26)–(28) into (29) yields

a1 ¼ 0; a2 ¼
6rm2k2c

q
; a0 ¼

c2 þ p � 4rð1þ m2Þk2c2
2qc

;
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where c and k are arbitrary constants. Thus the periodic solution of (29) is

u ¼ c2 þ p � 4rð1þ m2Þk2c2
2qc

þ 6rm2k2c
q

sn2kðx� ctÞ

and its corresponding solitary wave solution is

u ¼ c2 þ p � 8rk2c2

2qc
þ 6rk2c

q
tanh2 kðx� ctÞ:

5. Conclusion

The JEFE method is applied to some nonlinear wave equations and its applying domain is
given. The periodic solutions obtained by the JEFE method can be deduced as the shock wave or
solitary wave solutions in the limit condition. In this paper, the JEFE method is applied to
ð2iþ 1Þ-order KdV equations only when i ¼ 2; when i ¼ 1, i.e. KdV equation, its results can be
found in Ref. [1]. Actually, more mathematical softwares, such as Mathematica and Maple,
dealing with symbol computation have been applied to the boring algebraic operations, so
ð2iþ 1Þ-order KdV equations with large value i can be easily solved similarly. Actually, this
method can be applied to obtain solutions to more nonlinear wave equations, as long as the sum
of derivative order of every term is odd or even simultaneously in the nonlinear wave equations.

In this paper, only even n in (3) is considered, so the expansion about other Jacobi elliptic
functions such as cnn and dnn gives the same results as that about snn for the relations (4).
However, we can get different solutions when we use different JEFE in some cases, especially when
n is odd in the (3), the details about n ¼ 1 can be found in [16] (for mKdV equation and nonlinear
Klein–Gordon equation). Of course, the above discussions can be applied to coupled equations,
see [1,17,18] (for a variant of the Boussinesq equations) for example.
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