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Abstract

The power series expansion method is proposed and applied, just like the reductive perturbation method, to re
complicated nonlinear equation or set of equations to be the one that can be found the exact solutions.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the past three decades, the nonlinear w
researches have made great progress, among wh
number of new methods have been proposed to ge
exact solutions to nonlinear wave equations. In th
methods, the homogeneous balance method [1–3]
hyperbolic tangent function expansion method [4–
the nonlinear transformation method [7,8], the tr
function method [9,10], sine–cosine method [11],
Jacobi elliptic function expansion method [12,13] a
so on [14–16] are widely applied to solve nonline
wave equations exactly and many solutions are
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tained. Based on these solutions, the richness of s
tures is shown to exist in the different nonlinear wa
equations. However, there still exist much more co
plicated nonlinear equations or set of equations
hardly be solved directly, one has to seek their app
imate or asymptotic solutions [17,18]. Through t
Gardner–Morikawa transformation, the reductive p
turbation method [19] is applied to reduce the com
cated nonlinear equations or set of equations to s
able ones, such as KdV equation, cylindrical Kd
equation, spherical KdV equation and so on. In t
Letter, the power series expansion method is propo
and applied to some equations or set of equations,
as the reductive perturbation method, the similar
sults are given, but contrary to the reductive pertur
tion method, the power series expansion method
relatively simple one.
hts reserved.
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2. Power series expansion method

Consider a given nonlinear wave equations or se
equations

(1)N(u,ut , ux,utt , uxx, . . .) = 0.

First step in this method, the field quantities a
divided into the basic and perturbation parts, i.e.,

(2)u =U + u′ (u′ � |U |)
and write (1) the equations of perturbation quantit
Second step is seeking the travelling wave solution
the form

(3)u′ = u′(ξ), ξ = x − ct,

wherec is the wave speed which is supposed to b
constant. In the third step, the equation of perturba
quantities is reduced to the following form:

(4)
d2u′

dξ2 + F(u′)u′ = 0,

where F(u′) is a nonlinear function ofu′. Final
step is expandingF(u′) in power series, the linea
equation of (4) is given when the power series
F(u′) is taken only the first term; while when th
second term is also included, the equation is
ordinary differential equation that KdV correspon
to; when the power series is truncated after
third term, then the resulted equation is the ordin
differential equation that mixed KdV–mKdV (i.e
Gardner) equation corresponds to. So the crucial
is the third one to get the nonlinear functionF(u′), and
then its expansion form.

3. Applications

In this section, we will illustrate the applications
the power series expansion method to some nonli
wave equations.

3.1. Boussinesq system of shallow water waves [20]

(5)

{
ut + uux + ghx + H

3 httx = 0,

ht + uhx + hux = 0,

here(u, v) is the horizontal velocity,h is the height of
free surface,g is the acceleration of gravity.
Setting

(6)u= u′, h =H + h′ (h′ � H),

then Eq. (5) reduces to

(7)

{
u′
t + u′u′

x + gh′
x + H

3 h
′
t tx = 0,

h′
t + u′h′

x + (H + h′)u′
x = 0.

Supposing that the system (7) has travelling w
solution, i.e.,

u′ = u′(ξ), h′ = h′(ξ),
(8)ξ = x − ct (c = constant)

and substituting Eq. (8) into Eq. (7) yields

(9a)(u′ − c)
du′

dξ
+ g

dh′

dξ
+ Hc2

3

d3h′

dξ3
= 0,

(9b)(u′ − c)
dh′

dξ
+ (H + h′)du

′

dξ
= 0.

Integrating Eq. (9b) with respect toξ once and
taking the integration constant as zero, one can ge

(10)u′ = ch′

H + h′ .

Substituting Eq. (9a) into Eq. (10) yields

(11)
d2

dξ2

(
dh′

dξ

)
+ F(h′)

(
dh′

dξ

)
= 0,

here

(12)F(h′) = 3g

Hc2

[
1− H 2c2

g(H + h′)3

]
.

Because ofh′ � H , F(h′) can be expanded a
power series, i.e.,

F(h′) = 3g

Hc2

[(
1− c2

c2
0

)
+ 3c2

c2
0

h′

H

(13)− 6c2

c2
0

h′ 2

H 2
+ · · ·

]
,

wherec2
0 = gH .

If only the first term of F(h′) is chosen, then
Eq. (11) is reduced to

(14)
d3h′

dξ3
+ 3g

Hc2

(
1− c2

c2
0

)
dh′

dξ
= 0.

Obviously, this is a linear equation.
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If only the first two terms ofF(h′) are chosen, the
Eq. (11) is reduced to

(15)
d3h′

dξ3 + 3g

Hc2

[(
1− c2

c2
0

)
+ 3c2

c2
0

h′

H

]
dh′

dξ
= 0,

which is the ordinary differential equation that Kd
equation corresponds to. Actually, from Eq. (8) o
has

(16)
∂

∂t
= −c

d

dξ
,

∂

∂x
= d

dξ
,

then (15) can be rewritten as

(17)
∂h′

∂t
+ c0

(
1+ 3h′

2H

)
∂h′

∂x
+ 1

6
c0H

2∂
3h′

∂x3 = 0.

Obviously, this is KdV equation.
If only the first three terms ofF(h′) are chosen

then Eq. (11) is reduced to

d3h′

dξ3 + 3g

Hc2

[(
1− c2

c2
0

)
+ 3c2

c2
0

h′

H

(18)− 6c2

c2
0

h′ 2

H 2

]
dh′

dξ
= 0,

which is the ordinary differential equation that Gar
ner (i.e., mixed KdV–mKdV) equation corresponds
similarly it can be rewritten as

(19)

∂h′

∂t
+ c0

(
1+ 3h′

2H
− 3h′ 2

H 2

)
∂h′

∂x
+ 1

6
c0H

2∂
3h′

∂x3
= 0,

which is Gardner equation.

3.2. KD equations [21]

Konopelchenko–Dubrovsky (KD) equations read

(20)



ut − uxxx − 6βuux + 3

2α
2u2ux

− 3vy + 3αvux = 0,
uy = vx,

where bothu andv are the perturbation quantities.
Setting

(21)u = u(θ), v = v(θ), θ = kx + ly −ωt,

then (20) can be rewritten as

(22)




−ωdu
dθ

− k3 d3u
dθ3 − 6βkudu

dθ
+ 3

2α
2ku2 du

dθ

−3l dv
dθ

+ 3αkv du
dθ

= 0,

l du = k dv .

dθ dθ
Integrating the second equation in (22) with resp
to θ once and taking the integration constant as z
result inlu = kv, i.e.,

(23)v = l

k
u.

So substituting (23) into the first equation of (22) lea
to

−k3d
3u

dθ3
+ 3(αl − 2βk)u

du

dθ
+ 3

2
α2ku2du

dθ

(24)−
(
ω + 3l2

k

)
du

dθ
= 0.

Integrating (24) with respect toθ once and taking the
integration constant as zero yields

(25)

d2u

dθ2
+

[
− α2

2k2
u2 − 3(αl − 2βk)

2k3
u+ ω + 3l2

k

k3

]
u= 0,

where

(26)F(u)= ω + 3l2
k

k3 − 3(αl − 2βk)

2k3 u− α2

2k2u
2.

It is obvious thatF(u) is a polynomial ofu, if just the
first term is chosen, then (25) is reduced to

(27)
d2u

dθ2 + ω + 3l2
k

k3 u = 0,

which is a linear equation. If one takes(ω+ 3l2
k
)/k3 =

1, then the dispersion relation is

(28)ω = k3 − 3l2

k
.

If the first two terms ofF(u) are chosen, then one g
the ordinary differential equation that KdV equati
corresponds to, i.e.,

(29)
ω + 3l2

k

k3

du

dθ
− 3(αl − 2βk)

k3 u
du

dθ
+ d3u

dθ3 = 0.

If all three terms ofF(u) are chosen, then on
get the ordinary differential equation that KdV–mKd
(i.e., Gardner) equation corresponds to, i.e.,

ω + 3l2
k

k3

du

dθ
− 3α2

2k2
u2du

dθ
− 3(αl − 2βk)

k3
u
du

dθ

(30)+ d3u

dθ3
= 0.
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3.3. Electron–ion acoustic waves [22]

(31)

{
∂ne
∂t

+ ∂nevi
∂x

− ∂
∂x

[(
∂
∂t

+ vi
∂
∂x

)
∂ lnne
∂x

] = 0,
∂vi
∂t

+ vi
∂vi
∂x

+ ∂
∂x

lnne = 0,

where perturbation quantityne and vi are the elec-
tronic number density and ionic velocity, respective

Assuming that the solutions are given by

(32)ne = ne(ξ), vi = vi(ξ), ξ = x − ct.

Substituting (32) into (31) yields

(33)




−c dne
dξ

+ dnevi
dξ

− d
dξ

[
(vi − c) d

2 lnne
dξ2

] = 0,

−c
dvi
dξ

+ vi
dvi
dξ

+ d
dξ

lnne = 0.

Integrating (33) once with respect toξ and taking
the integration constant as zero lead to

(34)

{
−cne + nevi − (vi − c) d

2 lnne
dξ2 = 0,

−cvi + 1
2v

2
i + lnne = 0.

Eliminatingvi from (34) results in

(35)
d2 lnne
dξ2

− ne = 0.

Setting

(36)w = lnne,

we get

(37)
d2w

dξ2 + F(w)w = 0,

where

(38)F(w) = − 1

w
ew.

ExpandingF(w) in power series yields

(39)F(w) = − 1

w

(
1+w + 1

2
w2 + 1

6
w3 + · · ·

)
.

When the first two terms inF(w) is taken, i.e.,
F(w) = − 1

w
(1+w), then (37) is reduced to

(40)
d2w

dξ2
− (1+w) = 0,

which is a linear relation.
When the first three terms inF(w) is taken, i.e.,
F(w) = − 1

w
(1+w + 1

2w
2), then (37) is reduced to

(41)
d2w

dξ2
−

(
1+w + 1

2
w2

)
= 0.

Differentiating (41) once with respect toξ leads to

(42)
d3w

dξ3
− dw

dξ
−w

dw

dξ
= 0,

which is the corresponding ordinary differential equ
tion of KdV equation.

When the first four terms inF(w) is taken, i.e.,
F(w) = − 1

w
(1 + w + 1

2w
2 + 1

6w
3), then (37) is

reduced to

(43)
d2w

dξ2 −
(

1+w + 1

2
w2 + 1

6
w3

)
= 0.

Differentiating (43) once with respect toξ leads to

(44)
d3w

dξ3
− dw

dξ
−w

dw

dξ
− 1

2
w2dw

dξ
= 0,

which is the corresponding ordinary differential equ
tion of Gardner equation.

3.4. Inertial wave equations [23]

(45)

{
ut + uux − f0v = 0,
vt + uvx + f0u= 0,

where (u, v) are the perturbation velocities,f0 is a
constant.

Assuming that there exists travelling wave soluti
i.e.,

u= u(ξ), v = v(ξ),

(46)ξ = x − ct (c = constant).

Then Eq. (45) can be rewritten as

(47)

{
du
dξ

+ F(u)v = 0,
dv
dξ

− F(u)u= 0,

here

(48)F(u)= f0

c − u
.

If u� c, thenF(u) can be expanded as

(49)F(u)= f0

c − u
= f0

c

(
1+ u

c
+ u2

c2 + · · ·
)
.



238 S. Liu et al. / Physics Letters A 309 (2003) 234–239

ed

)

od
ated
ctly
der
ext

sfy
tion
re
we
no
are

for
by

.

.

8

2

1)
If just the first term inF(u) is taken, Eq. (47) can
be reduced to

(50)

{
du
dξ

+ f0
c
v = 0,

dv
dξ

− f0
c
u= 0,

then one gets

(51)
d2u

dξ2 + f 2
0

c2 u= 0.

It is obvious that this is a linear equation.
If the first two terms inF(u) is taken, Eq. (47) can

be reduced to

(52)

{
du
dξ

+ f0
c

(
1+ u

c

)
v = 0,

dv
dξ

− f0
c

(
1+ u

c

)
u = 0,

from which one can get

d2u

dξ2 + f 2
0

c2 u+ 2f 2
0

c3 u2 + f 2
0

c4 u
3 − f 2

0

c3 v
2

(53)− f 2
0

c4
uv2 = 0.

Actually, from Eq. (47), it is easily to obtain that

(54)
du

dv
= −v

u
,

i.e.,

(55)u2 + v2 = a2 (a2 = constant),

herea2 is integration constant.
Substituting Eq. (55) into Eq. (53) yields

d2u

dξ2 + f 2
0

c2

(
1− a2

c2

)
u+ 3f 2

0

c3 u2

(56)+ 2f 2
0

c4 u3 − f 2
0

c3 a
2 = 0.

Differentiating Eq. (56) with respect toξ once, the
ordinary differential equation that Gardner (i.e., mix
KdV–mKdV) equation can be derived, i.e.,

d3u

dξ3
+ f 2

0

c2

(
1− a2

c2

)
du

dξ
+ 6f 2

0

c3
u
du

dξ

(57)+ 6f 2
0

c4
u2du

dξ
= 0.

Actually, from Eq. (46) one has

(58)
∂ = −c

d
,

∂ = d
,

∂t dξ ∂x dξ
then from Eq. (57), it is easily derived that

∂u

∂t
+ 6c2

a2 − c2

(
1+ u

c

)
u
∂u

∂x

(59)+ c5

f 2
0 (a

2 − c2)

∂3u

∂x3
= 0.

Obviously, this is Gardner (i.e., mixed KdV–mKdV
equation.

4. Conclusion and discussion

In this Letter, the power series expansion meth
is proposed and applied to reduce some complic
nonlinear equations or set of equations to the exa
solvable nonlinear ones. Usually, the lowest or
approximation satisfies the linear relation, and the n
order and/or still next order approximations sati
the celebrated KdV equation and/or Garder equa
(i.e., mixed KdV–mKdV equation), respectively. Mo
higher order approximations can be also got if
take more terms, but it is worth noting that here
convergence conditions of power series expansion
considered and this deserves further research.
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