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Abstract

The power series expansion method is proposed and applied, just like the reductive perturbation method, to reduce the
complicated nonlinear equation or set of equations to be the one that can be found the exact solutions.
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1. Introduction tained. Based on these solutions, the richness of struc-
tures is shown to exist in the different nonlinear wave
During the past three decades, the nonlinear wave equations. However, there still exist much more com-
researches have made great progress, among which glicated nonlinear equations or set of equations can
number of new methods have been proposed to get thehardly be solved directly, one has to seek their approx-
exact solutions to nonlinear wave equations. In these imate or asymptotic solutions [17,18]. Through the
methods, the homogeneous balance method [1-3], theGardner—Morikawa transformation, the reductive per-
hyperbolic tangent function expansion method [4—6], turbation method [19] is applied to reduce the compli-
the nonlinear transformation method [7,8], the trial cated nonlinear equations or set of equations to solv-
function method [9,10], sine—cosine method [11], the able ones, such as KdV equation, cylindrical KdV
Jacobi elliptic function expansion method [12,13] and equation, spherical KdV equation and so on. In this
so on [14-16] are widely applied to solve nonlinear Letter, the power series expansion method is proposed
wave equations exactly and many solutions are ob- and applied to some equations or set of equations, just
as the reductive perturbation method, the similar re-
S, . . - . sults are given, but contrary to the reductive perturba-
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2. Power series expansion method Setting

Consider a given nonlinear wave equations or setof ¥ =4 h=H+h" (W' <H), (6)
equations then Eq. (5) reduces to
N(u’utvux’utl‘vux)m"')=O' (1) {u;—i—u/u;—i—gh;—i—%h;txzo, (7)
First step in this method, the field quantities are | A} +u'h) + (H 4+ h")u, =0.
divided into the basic and perturbation parts, i.e., Supposing that the system (7) has travelling wave
u=U+u W<« 1)) (2) solution, i.e.,
and write (1) the equations of perturbation quantities. ' =u'(&), N =Hn (),
tSht?::)cfc())r:dmstep is seeking the travelling wave solutions in E=x—ct (c=constant @)

and substituting Eqg. (8) into Eq. (7) yields
W= ®), E—x et 3) 9 Eq. (8) a-(Ny
du'  dh  Hc2dH

wherec is the wave speed which is supposedtobe a (u' —¢)— +g— + —= =3 =0, (9a)
constant. In the third step, the equation of perturbation dé/ d§ 3 ) d§
ities i i : dh d

quantities is reduced to the following form: A i +(H+h’)—u -0 (9b)

d%u’ ds ds

e + Fu')u' =0, (4) Integrating Eq. (9b) with respect to once and
taking the integration constant as zero, one can get

where F(u') is a nonlinear function ofu’. Final g ) g g

step is expanding” (") in power series, the linear U = ch (10)

equation of (4) is given when the power series of H+h'

F(u') is taken only the first term; while when the Substituting Eq. (9a) into Eq. (10) yields
second term is also included, the equation is the

ordinary differential equation that KdV corresponds d_2<d_W) N F(i/)(dh/) _0 (11)
to; when the power series is truncated after the 4&2\ d¢ 7
third term, then the resulted equation is the ordinary | oo

differential equation that mixed Kdv-mKdV (i.e., ) s
Gardner) equation corresponds to. So the crucial stepF(h/) _ 3g [ Hec } (12)

is the third one to get the nonlinear functifi:’), and He2|™ g(H +n)3

then its expansion form. Because ofi’ « H, F(h’) can be expanded as
power series, i.e.,

d§

3. Applications FO) = 3_g[(1_ f) N 3
T He? 2 2 H
In this section, we will illustrate the applications of ,0
the power series expansion method to some nonlinear _beth } (13)
wave equations. ¢ H? ’

wherec3 = gH.
If only the first term of F(#') is chosen, then
Eq. (11) is reduced to

3.1. Boussinesq system of shallow water waves [20]

“t+””x+ghx+%httx=0, 5 3, ) /
{h,+uhx+hux=o, ®) d°h 3g ( c )dh

+ = - =
3 2

here(u, v) is the horizontal velocity; is the height of dg He ds

free surfaceyg is the acceleration of gravity. Obviously, this is a linear equation.

- — 0. 14
= (14)
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If only the first two terms ofF'(4’) are chosen, then
Eqg. (11) is reduced to
da3n  3g 2\ 3c2n' Ndn
—=|(1-—= =0
T ch[< cg) Tz ] &~
which is the ordinary differentlal equation that KdV

equation corresponds to. Actually, from Eq. (8) one
has

(15)

9 d d d

—=—c—, — = (16)
ot d& ax  dE

then (15) can be rewritten as

an 3w\ on 1 3w

— +col 1+ =— | — + ZcoH?>—= =0. 17
o1 +‘°( +2H> T (7

Obviously, this is KdV equation.
If only the first three terms of"(#’) are chosen,
then Eq. (11) is reduced to

acn 3g 2 3c2n
R | el R
dE 2) " 2 H
6¢2 h'27dh
_7E4E=Q (18)
0

which is the ordinary differential equation that Gard-
ner (i.e., mixed KdV-mKdV) equation corresponds to,
similarly it can be rewritten as

8h’+ 1+3h’ 32\ on 1 H283h’
AL =
or T O\"T 20 THZ )ax T80T B3

0,

19)
which is Gardner equation.

3.2. KD equations[21]

Konopelchenko—Dubrovsky (KD) equations read

Uy — Uyxxy — 6Buuy + gazuzux
— 3vy + 3avu, =0, (20)
Uy =y,

where both: andv are the perturbation quantities.
Setting

u=u(9), v=v(0), O=kx+Ily—owt, (21)
then (20) can be rewritten as
—odt 3L Bk d y 302k 2dn
—319% + 3akvdt =0, (22)

dv
lw_k@.
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Integrating the second equation in (22) with respect
to 6 once and taking the integration constant as zero
result inlu = kv, i.e.,

l

V= —U.

k

So substituting (23) into the first equation of (22) leads
to

(23)

d3
—k3dT'§ + 3(al

32
- 0.
(‘”+ k )d@

Integrating (24) with respect t once and taking the
integration constant as zero yields

du 3 du
— 2Bk)u— + Za’ku’—
plu g + 3 k"

(24)

d2u o? , Bal—28k) o+
az*[‘ﬂﬁ“ T R C
(25)
where
32 2
o+ 3(al —2Bk) a” 2

Itis obvious thatF (u) is a polynomial ofu, if just the
first term is chosen, then (25) is reduced to

2
d2u o+ 2 31
which is a linear equation. If one takas + :%2)/k3 =
1, then the dispersion relation is
312
w=k - (28)

.
If the first two terms ofF' (1) are chosen, then one get
the ordinary differential equation that KdV equation
corresponds to, i.e.,
%zd_u_s(az—zﬁk)ud_qu@:O

k3 do k3 do  de3 '

If all three terms of F(u) are chosen, then one
get the ordinary differential equation that KdV—mKdV
(i.e., Gardner) equation corresponds to, i.e.,

(29)

+ 3 du 3 pdu 3l —2pk) du
KB do 22" de K a6
d3u
=0 (30)
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3.3. Electron-ion acoustic waves [22]

di[(at + ’ax)dldnxng] =0,

a“’ +v; 5 a“’ + ax Inn, =0,

ane + Bnev,

(31)

where perturbation quantity, and v; are the elec-

tronic number density and ionic velocity, respectively.

Assuming that the solutions are given by

ne =ng(§), vi =vi(§), &=x—ct. (32)
Substituting (32) into (31) yields
dn, dnlv, _d L d2|nng _
o ’ Floi—oTE =0

—cGE +v,dv’ +d§ Inn, =0.

Integrating (33) once with respect (éoand taking
the integration constant as zero lead to

2
—Cne+n€vi_( i — )ddIQZnE =Y (34)
—cv; + 2”: +Inn,=0.
Eliminatingv; from (34) results in
d?Inn,
Setting
w=Inn,, (36)
we get
2
w
dEZ + F(w)w = (37)
where
1
F(w)=——e". (38)
w
ExpandingF (w) in power series yields
1 1 1
Fw)=——(1+w+=w?+Zuwd+..-). (39)
w 2 6

When the first two terms irF(w) is taken, i.e.,

F(w) =—21(1+4w), then (37) is reduced to
d?w
d—éz_(l+ w) =0, (40)

which is a linear relation.
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When the first three terms iff(w) is taken, i.e.,

F(w)=—2(1+w+ 3w?), then (37) is reduced to
d?w 1,

Differentiating (41) once with respect ¢oleads to
Bw d W4

- -woo =0, (42)
ag® ~ag  VdE

which is the corresponding ordinary differential equa-
tion of KdV equation.
When the first four terms i (w) is taken, i.e.,

Fw) = —21 + w + 3w? + w®), then (37) is
reduced to
d*w 1, 14
d—$2—<1+w+§w +6w)=0. (43)
Differentiating (43) once with respect goleads to

3 1
d_w_d_w_wd_w__wzd_wza (44)
dgd  dg de 2 dg

which is the corresponding ordinary differential equa-
tion of Gardner equation.

3.4. Inertial wave equations[23]

{u,+uux—fov=0, (45)

vr +uvy + fou=0,

where (u, v) are the perturbation velocitiegp is a
constant.

Assuming that there exists travelling wave solution,
ie.,

u=u(), v=uv(§),
&E=x—ct (c=constant (46)
Then Eqg. (45) can be rewritten as
du
TE + F(u)v - Ov
o (47)
— F(uw)u =0,
here
Fay =12 (48)
cC—Uu
If u < ¢, thenF(u) can be expanded as
u2
Fluy=—1° —f°<1+ +—+ ) (49)
cC—Uu &
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If just the first term inF (u) is taken, Eq. (47) can
be reduced to

fo
+ =0,
{ f (50)
it — 2u=0,
then one gets
fo
=0. 51
dgz 5+% (51)

It is obvious that this is a linear equation.
If the first two terms inF (u) is taken, Eq. (47) can
be reduced to

d§+f°(1+ “)y =0,

(52)
@R+ u=o0,
from which one can get
15 2f8 2 15 3 15 2
d—§2+_ +— Fl/t —C—3U
fo —Suv 2=0. (53)

ActuaIIy, from Eq. (47), it is easily to obtain that

du v
—=——, 54
dv u (54)
ie.,
u? +v>=a® (a®=constant, (55)
herea? is integration constant.
Substituting Eq. (55) into Eq. (53) yields
fo a? 3f02 2
d—éz +=(1- ? u—+ 714
2
+#u3 fg 2_0. (56)
C C

Differentiating Eq. (56) with respect toonce, the
ordinary differential equation that Gardner (i.e., mixed
KdV—mKdV) equation can be derived, i.e.,

fo a?\ du 6f0 du
1— _
ds3 3t ( )it
6fo >du
——uct— =0. 57
C4 u dé ( )
Actually, from Eq. (46) one has
d d 0 d
—=—Cc—, —=—, (58)
ot dg ox  d&
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then from Eq. (57), it is easily derived that

S (1)
at  a?—c2 c) ox
c® a3u _
T R@ -0
Obviously, this is Gardner (i.e., mixed KdV—-mKdV)
equation.

(59)

4. Conclusion and discussion

In this Letter, the power series expansion method
is proposed and applied to reduce some complicated
nonlinear equations or set of equations to the exactly
solvable nonlinear ones. Usually, the lowest order
approximation satisfies the linear relation, and the next
order and/or still next order approximations satisfy
the celebrated KdV equation and/or Garder equation
(i.e., mixed KdV-mKdV equation), respectively. More
higher order approximations can be also got if we
take more terms, but it is worth noting that here no
convergence conditions of power series expansion are
considered and this deserves further research.
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