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Solitary Wave in Linear ODE with Variable Coefficients∗
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Abstract In this paper, the linear ordinary differential equations with variable coefficients are obtained from the
controlling equations satisfied by wavelet transform or atmospheric internal gravity waves, and these linear equations
can be further transformed into Weber equations. From Weber equations, the homoclinic orbit solutions can be derived,
so the solitary wave solutions to linear equations with variable coefficients are obtained.
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1 Introduction
Since the solitary wave solution in nonlinear KdV

equation was found,[1−3] it has been generally shown that
the solitary wave exists only in the conservative systems,
and the solitary wave solutions appear to be a result of
a balance between nonlinearity and dispersion or dissipa-
tion. But, for a given nonlinear partial differential equa-
tion (PDE), the assumption that u(x, t) = u(ξ) (where
ξ = x− ct) can reduce the nonlinear PDE to an ordinary
differential equation (ODE). We[3−6] have proposed that
the solitary wave solutions and wave front solutions in the
PDE correspond to homoclinic and heteroclinic orbits in
the ODE.[7] Hence, the solitary wave solutions exist also
in nonlinear dissipative PDE. The solitary wave solutions
in dissipative PDE are the result of balance between gain
and loss of energy. So in order to form solitary waves in
dissipative systems, there must be regions where energy is
pumped from an external source, as well as regions where
energy is dissipated outside the environment.

Mother wavelet in the wavelet transforms is also a soli-
tary wave,[8,9] but mother wavelet satisfies just an ODE
with a variable coefficients. Then here comes a question:
Can solitary wave exist in the ODE with variable coeffi-
cients?

2 Wavelet Solitary Wave
The wavelet transform of a function f(x) can be writ-

ten as,[10−13]

Tg(a, b) =
1
a

∫ +∞

−∞
f(x)g

(x− b

a

)
dx , (1)

where the mother wavelet g(x) takes the following form

g1(x) = − e−x2/2 , (2a)

g2(x) = x e−x2/2 , (2b)

g3(x) = (1− x2) e−x2/2 . (2c)

Equation (2a) is a Gaussian function, and equations (2b)
and (2c) are the first- and second-order derivatives of
Gaussian function (2a), respectively. Equation (2c) is also
called Mexican Cap wavelet.

Because the argument of the variable g[(x− b)/a] is
(x− b)/a, then g[(x− b)/a] can be written as a rightward
travelling wave, g(ξ) = g(x − ct). From Eq. (2), it is ob-
vious that g(x)→ 0, when x→ ±∞. Therefore the point
of g(x) = 0 is a homoclinic point of homoclinic orbit, i.e.,
g(ξ)→ 0 as ξ → ±∞, so g(ξ) is a solitary wave.

3 Linear Weber Equation for Gaussian-Kind
Wavelet
Assuming g(ξ) = e−ξ2/2, the n-th order derivative

of g(ξ) satisfies the following linear ODE with variable
coefficients,[13]

g(n+2)(ξ) + ξg(n+1)(ξ) + (n + 1)g(n)(ξ) = 0 , (3)

where the super-primes of g(ξ) denote the n-th order
derivative.

The three wavelets (2) satisfy the following ODE with
variable coefficients

g′′0 (ξ) + ξg′0(ξ) + g0(ξ) = 0 (n = 0) ,

g′′1 (ξ) + ξg′1(ξ) + 2g1(ξ) = 0 (n = 1) ,

g′′2 (ξ) + ξg′2(ξ) + 3g2(ξ) = 0 (n = 2) , (4)

respectively.
Generally, they can be written as

g′′n(ξ) + ξg′n(ξ) + (n + 1)gn(ξ) = 0 . (5)
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Let
gn(ξ) = e−ξ2/4y(ξ) , (6)

then

g′n(ξ) = e−ξ2/4
[
y′(ξ)− ξ

2
y(ξ)

]
, (7)

g′′n(ξ) = e−ξ2/4
[
y′′(ξ)− ξy′(ξ) +

ξ2

4
y(ξ)− 1

2
y(ξ)

]
. (8)

Substituting Eqs. (6) ∼ (8) into Eq. (5), we obtain

y′′(ξ) +
1
2

[
(2n + 1)− ξ2

2

]
y(ξ) = 0 , (9)

which is the well-known second kind of Weber equation.
Re-scaling the argument and taking η = ξ/

√
2, then

equation (9) is reduced to

y′′(η) + [(2n + 1)− η2]y(η) = 0 , (10)

which is the well-known first kind of Weber equation.
Equation (10) satisfying a bounded condition is an

eigenvalue problem, with its eigenvalue being (2n+1) and
eigenfunction being

y(η) = e−η2/2Hn(η) , (11)

then the bounded solution of Eq. (9) is

y(ξ) = 2−n/2 e−ξ2/4Hn

( ξ√
2

)
, (12)

where Hn is Hermite polynomials. For n = 0, n = 1, and
n = 2, Hermite polynomials are

H0(ξ) = 1 , H1(ξ) = 2ξ ,

H2(ξ) = 2(2ξ2 − 1) , (13)

respectively.
Substituting Eq. (12) into Eq. (6), it is obvious that

equation (6) is mother wavelet function (2) and takes the
solitary form, see Fig. 1.

Fig. 1 The form of solitary waves for g(ξ).

4 Homoclinic Orbit of Weber Equation
Let y′ = z, the first kind of Weber equation (10) can

be rewritten as

y′ = z , z′ = −[(2n + 1)− η2]y . (14)

Taking n = 2, from Eq. (10) the initial condition is
y = −2, z = 0, when η = 0. The orbit in phase plane
(y, z) is shown in Fig. 2(a).

In Fig. 2(a), the point A is initial place, ABO is or-
bit when ξ → +∞, and OBA is orbit when ξ → −∞.
The orbit in phase space (y, z, η) is shown in Fig. 2(b).
From Fig. 2, we see that all orbits approach to point
(y = 0, z = 0), so the orbits are called homoclinic orbit.

Fig. 2 The orbit in phase plane for Weber equation. (a)
2-D phase plane (y, z); (b) 3-D phase plane (y, z, η).

In fact, in Eq. (14) the point (0, 0) is a saddle point
when |η| → ∞, equation (10) is approximated to

y′′(η)− η2y(η) = 0 . (15)

Let ζ = η2, then one has

y′ = 2η
dy

dζ
, (16)

y′′ = 4ζ
d2y

dζ2
+ 2

dy

dζ
. (17)

So equation (15) is reduced to

4ζ
d2y

dζ2
+ 2

dy

dζ
− ζy = 0 (18)
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or
d2y

dζ2
+

1
2ζ

dy

dζ
− 1

4
y = 0 . (19)

When ζ is large enough (i.e., η is very large), one has

d2y

dζ2
− 1

4
y = 0 . (20)

From the physical view point, equation (20) is an ODE
with negative restoring force, and obviously (0, 0) is a sad-
dle point in phase plane (y, z).

From Eq. (10), we see that the negative restoring
force in y → ±∞ combining with positive restoring force
(2n + 1)y makes the orbit depart from unstable manifold
in saddle point, then rotate around η near zero due to pos-
itive restoring force, at last comes back to stable manifold
in saddle point and this forms a homoclinic orbit. It is
impossible for linear ODE with constant coefficients.

5 Internal Gravity Wave in Atmosphere
In the former sections, we have shown that there exists

homoclinic orbit in the Weber equation, and Mexican Cap
wavelet is just the solitary wave satisfying Weber equa-
tion. From the physical point of view, this is the result
of balance between positive and negative restoring forces.
Actually, the internal gravity wave in atmosphere is re-
sulted from the atmospheric stratification, where the daily
atmospheric boundary layer is often unstably stratified
(correspond to negative restoring force) and the noctur-
nal atmospheric boundary layer is often stably stratified
(correspond to positive restoring force).

When Boussinesq approximation is taken, the non-
dimensional equations used to describe atmospheric inter-
nal gravity wave resulted from atmospheric stratification
are

∂u

∂t
= −∂p

∂x
,

∂w

∂t
= −∂p

∂z
+ θ ,

∂u

∂x
+

∂w

∂z
= 0 ,

∂θ

∂t
= −Riw , (21)

where t is time and (u, w) are non-dimensional velocities in
the plane (x, z); P, θ are non-dimensional pressure and po-
tential temperature, respectively. Ri is Richardson num-
ber, and usually it varies with z.

From Eq. (21), elimination yields

∂2

∂t2

(∂2w

∂z2

)
+

∂2

∂t2

(∂2w

∂x2

)
+ Ri

∂2w

∂x2
= 0 . (22)

Assuming equation (22) to admit the following travel-
ling wave solution

w = W (z) e i(kx−ωt) , (23)

then substituting Eq. (23) into Eq. (22) leads to the equa-
tion satisfied by amplitude, i.e.,

d2W

dz2
+

( k2

ω2
Ri − k2

)
W = 0 . (24)

If the variation of Ri with z is supposed to take the
following form

Ri = a− z2 (a > 0) . (25)

This indicates that Ri decreases with the increase of
height.

Then equation (24) is rewritten as

d2W

dz2
1

+ (λ− z2
1)W = 0 (26)

with

λ =
k

ω
a− ωk ,

z1 =

√
k

ω
z . (27)

Equation (26) is the first kind of Weber equation tak-
ing the form of Eq. (10). It has eigenvalue λ = 2n+1 (n =
0, 1, 2, . . .) when W → 0, λ (z1 → ±∞), and the corre-
sponding solution is

W (z1) = e−z2
1/2Hn(z1) (n = 0, 1, 2, . . .) , (28)

so the amplitude of internal gravity W (z1) takes the form
of solitary waves.

6 Conclusion
In this paper, from the characteristics of mother

wavelet and the controlling equations of atmospheric inter-
nal gravity, the linear differential equations with variable
coefficients are derived, and these linear differential equa-
tions can be transformed into well-known Weber equation.
Then the homoclinic orbit solution to Weber equation is
obtained, so the solitary wave solutions to the linear dif-
ferential equations with variable coefficients are obtained.
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