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Solutions to Generalized mKdV Equation∗
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Abstract A transformation is introduced for generalized mKdV (GmKdV for short) equation and Jacobi elliptic
function expansion method is applied to solve it. It is shown that GmKdV equation with a real number parameter
can be solved directly by using Jacobi elliptic function expansion method when this transformation is introduced, and
periodic solution and solitary wave solution are obtained. Then the generalized solution to GmKdV equation deduces to
some special solutions to some well-known nonlinear equations, such as KdV equation, mKdV equation, when the real
parameter is set specific values.
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1 Introduction
A number of problems in branches of physics, mathe-

matics, and other interdisciplinary sciences are described
in terms of suitable nonlinear models, such as nonlinear
Schrödinger equations in plasma physics,[1] KdV equa-
tion in shallow water model,[2] and so on. Recently,
special attention has been devoted in literature to solv-
ing nonlinear evolution equations. Many methods have
been proposed to construct exact solutions to nonlinear
equations. Among them are the function transformation
method,[3,4] the homogeneous balance method,[5,6] the hy-
perbolic function expansion method,[7,8] the Jacobi ellip-
tic function expansion method,[9,10] the nonlinear trans-
formation method,[11,12] the trial function method,[13,14]

and others.[15−18]

Actually, these methods are all just suitable for solv-
ing some special kinds of nonlinear evolution equations.
No method can work for all kinds of nonlinear evolution
equations directly. For example, the solutions obtained
from the trial function method[13,14] are just some spe-
cial ones, which are fewer than those obtained from some
expansion methods. But for expansion methods, such
as the function transformation method,[3,4] the homoge-
neous balance method,[5,6] the hyperbolic function expan-
sion method,[7,8] and the Jacobi elliptic function expan-
sion method,[9,10] the expansion order must be a positive
integer. However, for more nonlinear evolution equations,
the expansion order (obtained from the partial balance be-
tween the highest degree nonlinear terms and the highest
order derivative terms) is not a positive integer. It may
be a negative integer, or it may be just a real number.
When the expansion order is not a positive integer, the
expansion method cannot be applied to solve the corre-
sponding nonlinear equation directly. Then some kinds of
transformations are needed.

In this paper, we will consider this case. A transforma-
tion for GmKdV equation is introduced and then Jacobi
elliptic expansion method is applied to transformed equa-
tion to derive solutions to GmKdV equation indirectly.

The GmKdV equation considered here is introduced

by Fedele,[19] which reads
∂u

∂t
+ αuγ ∂u

∂x
+ β

∂3u

∂x3
= 0 , (1)

where u is a real function, and α, β, and γ are real num-
bers. We seek its travelling wave solution, i.e.

u = u(ξ) , ξ = k(x− ct) , (2)
where k and c are wave number and wave speed, respec-
tively. Substituting Eq. (2) into Eq. (3) yields

−c
du

dξ
+ αuγ du

dξ
+ βk2 d3u

dξ3
= 0 . (3)

Applying expansion method, if we take the expansion
order of u as O(u) = n and O(du/dξ) = n + 1, then par-
tial balance between the highest degree nonlinear term
and the highest order derivative term leads to n = 2/γ.
Obviously, when γ is a real number, 2/γ must not be an
integer, so expansion method cannot be applied to solve
Eq. (3) directly. In order to solve Eq. (3), we introduce a
transformation,

u = v2/γ . (4)

Considering the transformation (4), equation (3) can
be rewritten as

− cv2 dv

dξ
+ αv4 dv

dξ
+ βk2

[( 2
γ
− 1

)( 2
γ
− 2

)( dv

dξ

)3

+ 3
( 2

γ
− 1

)
v

dv

dξ

d2v

dξ2
+ v2 d3v

dξ3

]
= 0 . (5)

In the next sections, we will apply Jacobi elliptic func-
tion expansion method to solve Eq. (5), and then obtain
solutions to GmKdV equation (1).

2 Solutions to GmKdV Equation

2.1 Jacobi Elliptic Cosine Function Expansion
Solutions

Firstly, we consider Jacobi elliptic cosine function ex-
pansion solutions to Eq. (5), i.e.

v =
n∑

i=0

aicniξ , (6)

where cn ξ is Jacobi elliptic cosine function.[20−23]
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Substituting Eq. (6) into (5) and partial balance be-
tween the highest degree nonlinear term and the highest
order derivative term lead to n = 1, so the ansatz solution
can be written as

v = a0 + a1cn ξ , (7)
from which we can get

dv

dξ
= −a1sn ξdn ξ , (8)

and
d2v

dξ2
= a1cn ξ[(2m2 − 1)− 2m2cn2ξ] , (9)

and
d3v

dξ3
= a1[(1− 2m2) + 6m2cn2ξ] sn ξdn ξ , (10)

where sn ξ and dn ξ are Jacobi elliptic sine function and
Jacobi elliptic function of the third kind.[20−23]

Substituting Eqs. (7) ∼ (10) into Eq. (5) leads to{
ca2

0a1 − αa4
0a1 + βk2

[
−

( 2
γ
− 1

)( 2
γ
− 2

)
(1−m2)a3

1 + (1− 2m2)a2
0a1

]}
+

{
2ca0a

2
1 − 4αa3

0a
2
1 + βk2

[
−3

( 2
γ
− 1

)
(2m2 − 1)a0a

2
1 + 2(1− 2m2)a0a

2
1

]}
cn ξ

+
{

ca3
1 − 6αa2

0a
3
1 + βk2

[
−

( 2
γ
− 1

)( 2
γ
− 2

)
(2m2 − 1)a3

1

− 3
( 2

γ
− 1

)
(2m2 − 1)a3

1 + (1− 2m2)a3
1 + 6m2a2

0a1

]}
cn2ξ

+
{
−4αa0a

4
1 + βk2

[
6
( 2

γ
− 1

)
m2a0a

2
1 + 12m2a0a

2
1

]}
cn3ξ

+
{
−αa5

1 + βk2
[( 2

γ
− 1

)( 2
γ
− 2

)
m2a3

1 + 6
( 2

γ
− 1

)
m2a3

1 + 6m2a3
1

]}
cn4ξ = 0 . (11)

Because of the arbitrariness of ξ, in order to let Eq. (11) have solution, there must be the following algebraic
equations

ca2
0a1 − αa4

0a1 + βk2
[
−

( 2
γ
− 1

)( 2
γ
− 2

)
(1−m2)a3

1 + (1− 2m2)a2
0a1

]
= 0 , (12a)

2ca0a
2
1 − 4αa3

0a
2
1 + βk2

[
−3

( 2
γ
− 1

)
(2m2 − 1)a0a

2
1 + 2(1− 2m2)a0a

2
1

]
= 0 , (12b)

ca3
1 − 6αa2

0a
3
1 + βk2

[
−

( 2
γ
− 1

)( 2
γ
− 2

)
(2m2 − 1)a3

1

− 3
( 2

γ
− 1

)
(2m2 − 1)a3

1 + (1− 2m2)a3
1 + 6m2a2

0a1

]
= 0 , (12c)

− 4αa0a
4
1 + βk2

[
6
( 2

γ
− 1

)
m2a0a

2
1 + 12m2a0a

2
1

]
= 0 , (12d)

− αa5
1 + βk2

[( 2
γ
− 1

)( 2
γ
− 2

)
m2a3

1 + 6
( 2

γ
− 1

)
m2a3

1 + 6m2a3
1

]
= 0 , (12e)

from which one has

a0 = 0 , γ = 1 , c = 4(2m2 − 1)βk2 , a1 = ±
√

12m2βk2

α
, (13)

or

a0 = 0 , γ = 2 , c = (2m2 − 1)βk2 , a1 = ±
√

6m2βk2

α
, (14)

or

a0 = 0 , m2 = 1 , c =
4βk2

γ2
, a1 = ±

√
βk2

α

( 2
γ

+ 1
)( 2

γ
+ 2

)
. (15)

And then the corresponding solutions are

v1 = ±
√

12m2βk2/α cn ξ , (16)

v2 = ±
√

6m2βk2/α cn ξ , (17)

and

v3 = ±
√

(βk2/α)
(
2/γ + 1

)(
2/γ + 2

)
sech ξ . (18)

Considering the transformation (4), the final solutions

are

u1 =
12m2βk2

α
cn2ξ , (19)

u2 = ±
√

6m2βk2

α
cn ξ , (20)

and

u3 =
[
±

√
βk2

α

( 2
γ

+ 1
)( 2

γ
+ 2

)
sech ξ

]2/γ

. (21)
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Here it should be noted that for some cases depend-
ing on the value of γ, the signs ± in Eq. (21) should be
replaced by +.

Equations (19) and (20) are periodic solutions to
Eq. (1) with γ = 1 and γ = 2, respectively. When m = 1,
they degenerate to solitary wave solutions,

u4 =
12βk2

α
sech2ξ , (22)

and

u5 = ±
√

6βk2

α
sech ξ . (23)

For Eq. (21), we know that γ is any real number, so
it can be taken as a generalized solitary wave solution to
Eq. (1). For example, when γ = 3, 4, 6, 8, 16, the corre-
sponding solutions are

u6 =
(40βk2

9α

)1/3

sech2/3ξ , (24)

u7 =
(15βk2

4α

)1/4

sech1/2ξ , (25)

u8 = ±
(28βk2

9α

)1/6

sech1/3ξ , (26)

u9 =
(45βk2

16α

)1/8

sech1/4ξ , (27)

and

u10 =
[153βk2

64α

]1/16

sech1/8ξ . (28)

When γ = 1/3, 1/4, 1/6, 1/8, the corresponding solu-

tions are

u11 =
(56βk2

α

)3

sech6ξ , (29)

u12 =
(90βk2

α

)4

sech8ξ , (30)

u13 =
(182βk2

α

)6

sech12ξ , (31)

u14 =
(306βk2

α

)8

sech16ξ . (32)

2.2 Jacobi Elliptic Sine Function Expansion
Solutions

Here we consider Jacobi elliptic sine function expan-
sion solutions to Eq. (5), i.e.

v =
n∑

i=0

aisniξ . (33)

Similarly the ansatz solution can be written as
v = a0 + a1sn ξ , (34)

from which we can get
dv

dξ
= a1cn ξdn ξ , (35)

d2v

dξ2
= −a1sn ξ[(1 + m2)− 2m2sn2ξ] , (36)

and
d3v

dξ3
= −a1[(1 + m2)− 6m2sn2ξ]cn ξdn ξ . (37)

Substituting Eqs. (34) ∼ (37) into Eq. (5) leads to the following algebraic equations

−ca2
0a1 + αa4

0a1 + βk2
[( 2

γ
− 1

)( 2
γ
− 2

)
a3
1 − (1 + m2)a2

0a1

]
= 0 , (38a)

−2ca0a
2
1 + 4αa3

0a
2
1 + βk2

[
−3

( 2
γ
− 1

)
(1 + m2)a0a

2
1 − 2(1 + m2)a0a

2
1

]
= 0 , (38b)

−ca3
1 + 6αa2

0a
3
1 + βk2

[
−

( 2
γ
− 1

)( 2
γ
− 2

)
(1 + m2)a3

1 − 3
( 2

γ
− 1

)
(1 + m2)a3

1 − (1 + m2)a3
1 + 6m2a2

0a1

]
= 0 , (38c)

4αa0a
4
1 + βk2

[
6
( 2

γ
− 1

)
m2a0a

2
1 + 12m2a0a

2
1

]
= 0 , (38d)

αa5
1 + βk2

[( 2
γ
− 1

)( 2
γ
− 2

)
m2a3

1 + 6
( 2

γ
− 1

)
m2a3

1 + 6m2a3
1

]
= 0 , (38e)

from which one has

a0 = 0 , γ = 1 , c = −4(1 + m2)βk2 , a1 = ±
√
−12m2βk2

α
, (39)

or

a0 = 0 , γ = 2 , c = −(1 + m2)βk2 , a1 = ±
√
−6m2βk2

α
. (40)

So their corresponding solutions are

v4 = ±
√
−12m2βk2

α
sn ξ (41)

and

v5 = ±
√
−6m2βk2

α
sn ξ , (42)

and then

u15 = −12m2βk2

α
sn2ξ (43)

and

u16 = ±
√
−6m2βk2

α
sn ξ . (44)

Equations (43) and (44) are periodic solutions to
Eq. (1) with γ = 1 and γ = 2, respectively. When m = 1,
they degenerate to solitary wave solutions

u17 = −12βk2

α
tanh2ξ (45)
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and

u18 = ±
√
−6βk2

α
tanhξ . (46)

2.3 Jacobi Elliptic Function of the Third Kind
Expansion Solutions

In this section, we consider Jacobi elliptic function of
the third kind expansion solutions to Eq. (5), i.e.

v =
n∑

i=0

aidn iξ . (47)

Similarly the ansatz solution can be written as
v = a0 + a1dn ξ , (48)

from which we can get
dv

dξ
= −m2a1sn ξcn ξ , (49)

d2v

dξ2
= −a1dn ξ[(m2 − 2) + 2 dn2ξ] , (50)

and
d3v

dξ3
= a1m

2[(m2 − 2) + 6 dn2ξ] sn ξcn ξ . (51)

Substituting Eq. (48) ∼ (51) into Eq. (5) yields
a0 = 0 , γ = 1 , c = 4(2−m2)βk2 ,

a1 = ±
√

12βk2/α , (52)
or

a0 = 0 , γ = 2 , c = (2−m2)βk2 ,

a1 = ±
√

6βk2/α , (53)
or

a0 = 0 , m2 = 1 , c = 4βk2/γ2 ,

a1 = ±

√
βk2

α

( 2
γ

+ 1
)( 2

γ
+ 2

)
. (54)

So their corresponding solutions are

v6 = ±
√

12βk2/α dn ξ (55)
and

v7 = ±
√

6βk2/α dn ξ , (56)

and then
u19 = (12βk2/α) dn2ξ (57)

and
u20 = ±

√
6βk2/α dn ξ . (58)

Equations (57) and (58) are periodic solutions to
Eq. (1) with γ = 1 and γ = 2, respectively. When m = 1,
they degenerate to solitary wave solutions (22) and (23),
respectively.

For the case of Eq. (54), the solution is the same one
as Eq. (18) and the final solution is just the same one as
Eq. (21), so the same discussion can be obtained as from
Eqs. (24) ∼ (32).

3 Conclusion
In this paper, we introduce a new transformation and

apply it to transform GmKdV equation into the one solv-
able in terms of Jacobi elliptic function expansion method,
directly. Many solutions are obtained for this general-
ized mKdV equation, such as solitary wave solutions con-
structed in terms of hyperbolic functions and periodic so-
lutions expressed in terms of periodic solutions dealing
with elliptic functions. Some of them are not given in
literature to our knowledge. Of course, the similar trans-
formations for other nonlinear wave equations can also
be constructed, which makes the Jacobi elliptic function
expansion method applicable directly to more nonlinear
wave equations.
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