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Applications of Elliptic Equation to Nonlinear Coupled Systems∗
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Abstract The elliptic equation is taken as a transformation and applied to solve nonlinear coupled systems. It
is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave
solutions, periodic wave solutions and so on, so this method can be taken as a unified method in solving nonlinear coupled
systems.
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1 Introduction
Since more and more problems have to involve non-

linearity, how to solve these nonlinear models attracts
much attention, and many methods have been proposed to
construct exact solutions to nonlinear equations. Among
them are the function transformation method,[1−4] the
homogeneous balance method,[5−7] the hyperbolic func-
tion expansion method,[8−11] the Jacobi elliptic func-
tion expansion method,[12,13] the nonlinear transforma-
tion method,[14,15] the trial function method[16,17] and
others.[18−20]

Among these methods, a transformation is often in-
troduced to simplify solving processes.[1−4,8,10] For exam-
ple, in the hyperbolic function expansion methods, when
a transformation is introduced, one can get more kinds of
solutions. For example, Fan[8] introduced

u = u(w) ,
dw

dξ
= b + w2 , w = w(ξ) , ξ = x− ct , (1)

and Yan et al.[10] extended it as

u = u(w) ,
dw

dξ
= R(1 + µw2) . (2)

Actually, there Fan and Yan applied the well-known Ric-
cati equation as their transformations.

In this paper, we will consider elliptic equation[21]

y′2 =
4∑

i=0

aiy
i , a4 6= 0 , (3)

where y′ = dy/dξ, and take it as a new transforma-
tion to solve nonlinear wave equations. In the following
sections, applications of transformation (3) to some well-
known nonlinear coupled systems will be discussed.

2 Coupled mKdV Equations
We here consider coupled mKdV equations of the fol-

lowing form

ut + αu2ux + βuxxx + c0vx = 0 ,

vt + γvvx + δ(uv)x = 0 . (4)

Seeking their solution in the following frame

u = u(ξ) , v = v(ξ) , ξ = x− ct , (5)

then we can get

− cu′ + αu2u′ + βu′′′ + c0v
′ = 0 ,

− cv′ + γvv′ + δ(uv)′ = 0 . (6)

And then we suppose that equations (4) have the following
solution

u = u(y) =
n1∑

j1=0

bj1y
j1 , v = v(y) =

n2∑
j1=0

dj2y
j2 , (7)

where y satisfies the elliptic equation (3), then

y′′ =
a1

2
+ a2y +

3a3

2
y2 + 2a4y

3 ,

y′′′ = (a2 + 3a3y + 6a4y
2)y′ . (8)

There n in Eq. (7) can be determined by the partial bal-
ance between the highest order derivative terms and the
highest degree nonlinear term in Eqs. (4). Here we know
that the degrees of u and v are

O(u) = O(yn1) = n1 , O(v) = O(yn2) = n2 , (9)

and from Eqs. (3) and (8), one has

O(y′2) = O(y4) = 4 , O(y′′) = O(y3) = 3 . (10)

Actually one can get

O(y(l)) = l + 1 . (11)

So one has

O(u) = n1 , O(v) = n2 , O(u′) = n1 + 1 ,

O(u′′) = n1 + 2 , O(u(l)) = n1 + l . (12)

For coupled mKdV equations (4), we have n1 = 1 and
n2 = 1, so the ansatz solution (7) can be rewritten as

u = b0 + b1y , v = d0 + d1y , b1 6= 0 , d1 6= 0 . (13)
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Substituting Eqs. (13) into Eqs. (6) leads to

b0 = ∓3βa3

2α

√
− α

6βa4
, b1 = ±

√
−6βa4

α
,

d1 = ∓2δ

γ

√
−6βa4

α
,

d0 = −3βa2
3

4γa4
+

2βa2

γ
− 4δc0

γ2
± 3δβa3

γα

√
− α

6βa4
. (14)

So if a3 = 0, then

b0 = 0 , b1 = ±
√
−6βa4

α
,

d1 = ∓2δ

γ

√
−6βa4

α
, d0 =

2βa2

γ
− 4δc0

γ2
, (15)

and if we take the arbitrary constant a1 = 0 then the
transformation (3) takes the following form

y′2 = a0 + a2y
2 + a4y

4 , (16)

which has many more kinds of solutions, some of which
we will show next.
Case A Consider a0 = 0, then

y′2 = a2y
2 + a4y

4 , (17)

and we have two kinds of solutions:
(i) If a2 > 0 and a4 > 0, the solution is

y = ±
√

a2

a4
csch (

√
a2 ξ) , (18)

and

u = b1y = ±
√
−6βa2

α
csch (

√
a2 ξ) (19)

v = d0 + d1y =
2βa2

γ
− 4δc0

γ2

∓ 2δ

γ

√
−6βa2

α
csch (

√
a2 ξ) . (20)

(ii) If a2 < 0 and a4 > 0, the solution is

y = ±
√
−a2

a4
csc (

√
−a2 ξ) , (21)

and

u = b1y = ±
√

6βa2

α
csc (

√
−a2 ξ) , (22)

v = d0 + d1y =
2βa2

γ
− 4δc0

γ2

∓ 2δ

γ

√
6βa2

α
csc (

√
−a2 ξ) . (23)

These two kinds of solutions deal with “hot spots” or
“blow-up” of solutions,[22−25] which can develop singular-
ity at a finite point.
Case B Consider a0 = a2 = 0 and a4 > 0, so b0 = 0,
then

y = ± 1
√

a4ξ
, (24)

and

u = b1y = ±
√
−6β

α

1
ξ

, (25)

v = d0 + d1y = −4δc0

γ2
∓ 2δ

γ

√
−6β

α

1
ξ

, (26)

which are rational solutions. The rational solutions are
a disjoint union of manifolds and the particle system de-
scribing the motion of pole of rational solutions, which
have been discussed in many literatures, such as Refs. [26]
and [27].
Case C Consider transformation (16) directly, from
which many more solutions expressed in terms of different
elliptic functions[21] can be got.

(i) If a0 = 1, a2 = −(1 + m2), and a4 = m2 (where
0 ≤ m ≤ 1, m is called modulus of Jacobi elliptic func-
tions, see Refs. [21] and [28] ∼ [30]), then the solution
is

y = sn (ξ, m) , (27)

where sn (ξ, m) is Jacobi elliptic sine function (see
Refs. [21] and [28] ∼ [30]), and

u = b1y = ±
√
−6β

α
m sn (ξ, m) , (28)

v = d0 + d1y = −2β(1 + m2)
γ

− 4δc0

γ2
∓ 2δ

γ

√
−6β

α
m sn (ξ, m) . (29)

(ii) If a0 = m2, a2 = −(1 + m2), and a4 = 1, then the
solution is

y = ns (ξ, m) ≡ 1
sn (ξ, m)

, (30)

and

u = b1y = ±
√
−6β

α
ns (ξ,m) , (31)

v = d0 + d1y = −2β(1 + m2)
γ

− 4δc0

γ2
∓ 2δ

γ

√
−6β

α
ns (ξ, m) . (32)

(iii) If a0 = −m2, a2 = 2m2 − 1, and a4 = 1 − m2,
then the solution is

y = nc (ξ, m) ≡ 1
cn (ξ, m)

, (33)

where cn (ξ, m) is Jacobi elliptic cosine function (see
Refs. [21] and [28] ∼ [30]) and

u = b1y = ±
√
−6β(1−m2)

α
nc (ξ, m) , (34)

v = d0 + d1y =
2β(2m2 − 1)

γ

− 4δc0

γ2
∓ 2δ

γ

√
−6β(1−m2)

α
nc (ξ, m) . (35)
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(iv) If a0 = 1, a2 = 2−m2, and a4 = 1−m2, then the
solution is

y = sc (ξ,m) ≡ sn (ξ, m)
cn (ξ,m)

, (36)

and

u = b1y = ±
√
−6β(1−m2)

α
sc (ξ, m) , (37)

v = d0 + d1y =
2β(2−m2)

γ

− 4δc0

γ2
∓ 2δ

γ

√
−6β(1−m2)

α
sc (ξ, m) . (38)

(v) If a0 = 1−m2, a2 = 2−m2, and a4 = 1, then the
solution is

y = cs (ξ,m) ≡ cn (ξ,m)
sn (ξ,m)

, (39)

and

u = b1y = ±
√
−6β

α
cs (ξ, m) , (40)

v = d0 + d1y =
2β(2−m2)

γ

− 4δc0

γ2
∓ 2δ

γ

√
−6β

α
cs (ξ, m) . (41)

(vi) If a0 = 1, a2 = −(1 + m2), and a4 = m2, then the
solution is

y = cd (ξ,m) ≡ cn (ξ, m)
dn (ξ,m)

, (42)

where dn (ξ, m) is Jacobi elliptic function of the third kind
(see Refs. [21] and [28] ∼ [30]) and

u = b1y = ±
√
−6β

α
m cd (ξ, m) , (43)

v = d0 + d1y = −2β(1 + m2)
γ

− 4δc0

γ2
∓ 2δ

γ

√
−6β

α
m cd (ξ, m) . (44)

(vii) If a0 = m2(m2 − 1), a2 = 2m2 − 1, and a4 = 1,
then the solution is

y = ds (ξ,m) ≡ dn (ξ,m)
sn (ξ, m)

, (45)

and

u = b1y = ±
√
−6β

α
ds (ξ,m) , (46)

v = d0 + d1y =
2β(2m2 − 1)

γ

− 4δc0

γ2
∓ 2δ

γ

√
−6β

α
ds (ξ, m) . (47)

(viii) If a0 = m2, a2 = −(1 + m2), and a4 = 1, then
the solution is

y = dc (ξ,m) ≡ dn (ξ,m)
cn (ξ, m)

, (48)

and

u = b1y = ±
√
−6β

α
dc (ξ,m) , (49)

v = d0 + d1y = −2β(1 + m2)
γ

− 4δc0

γ2
∓ 2δ

γ

√
−6β

α
dc (ξ,m) . (50)

(ix) If a0 = 1−m2, a2 = 2m2−1, and a4 = −m2, then
the solution is

y = cn (ξ, m) , (51)

and

u = b1y = ±
√

6β

α
m cn (ξ,m) , (52)

v = d0 + d1y =
2β(2m2 − 1)

γ

− 4δc0

γ2
∓ 2δ

γ

√
6β

α
cn (ξ, m) . (53)

(x) If a0 = 1 −m2, a2 = 2 −m2, and a4 = −1, then
the solution is

y = dn (ξ, m) , (54)

and

u = b1y = ±
√

6β

α
dn (ξ,m) , (55)

v = d0 + d1y =
2β(2−m2)

γ

− 4δc0

γ2
∓ 2δ

γ

√
6β

α
dn (ξ,m) . (56)

(xi) If a0 = −1, a2 = 2 −m2, and a4 = m2 − 1, then
the solution is

y = nd (ξ, m) ≡ 1
dn (ξ, m)

, (57)

and

u = b1y = ±
√
−6β(m2 − 1)

α
nd (ξ, m) , (58)

v = d0 + d1y =
2β(2−m2)

γ

− 4δc0

γ2
∓ 2δ

γ

√
−6β(m2 − 1)

α
nd (ξ, m) . (59)

(xii) If a0 = 1, a2 = 2m2 − 1, and a4 = (m2 − 1)m2,
then the solution is

y = sd (ξ,m) ≡ sn (ξ, m)
dn (ξ,m)

, (60)

and

u = b1y = ±
√
−6β(m2 − 1)m2

α
sd (ξ,m) , (61)

v = d0 + d1y =
2β(2m2 − 1)

γ
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− 4δc0

γ2
∓ 2δ

γ

√
−6β(m2 − 1)m2

α
sd (ξ,m) . (62)

And among the Jacobi elliptic functions, sine Jacobi el-
liptic function, cosine Jacobi elliptic functions and Jacobi
elliptic function of the third kind are three basic ones,
and all other Jacobi elliptic functions can be expressed
in terms of them. These periodic solutions expressed in
terms of each Jacobi elliptic function or some Jacobi ellip-
tic functions have their physical meanings respectively, es-
pecially, it is known that when m → 1, sn (ξ,m) → tanh ξ,
cn (ξ, m) → sech ξ, dn (ξ, m) → sech ξ and when m → 0,
sn (ξ, m) → sin ξ, cn (ξ,m) → cos ξ. So we can also get
more kinds of solutions expressed in terms of hyperbolic
functions and trigonometric functions, i.e. we can get
more solitary wave solutions, kink solutions, singular wave
solutions, and so on.

3 System of Variant Boussinesq Equations
The system of variant Boussinesq equations reads[5]

Ht + (Hu)x + uxxx = 0 , ut + Hx + uux = 0 , (63)

which is a model for water waves, where u(x, t) is the ve-
locity and H(x, t) is the total depth.

We seek its travelling wave solutions in the following
frame,

u = u(ξ) , H = H(ξ) , ξ = x− ct , (64)

where c is wave velocity.
And then we suppose that equations (63) have the fol-

lowing solution

H = H(y) =
n1∑

j1=0

bj1y
j1 , u = u(y) =

n2∑
j2=0

dj2y
j2 , (65)

where y satisfies the elliptic equation (3). There n in
Eq. (65) can be determined by the partial balance between
the highest order derivative terms and the highest degree
nonlinear term in Eqs. (63). For the system of variant
Boussinesq equations (63), we have n1 = 2 and n2 = 1, so
the ansatz solution (65) can be rewritten as

H = b0 + b1y + b2y
2, u = d0 + d1y, b2 6= 0 , d1 6= 0. (66)

Then substituting Eq. (66) into Eq. (64) and collecting
each order of y yields the algebraic equations about coeffi-
cients bj(j = 0, 1, 2), dj(j = 0, 1), and ai (i = 0, 1, 2, 3, 4),

b2 = −2a4 , b1 = −a3 , b0 = −1
2

[
a2 ±

ca3

2
√

a4

]
,

d1 = ±2
√

a4 , d0 = c± a3

2
√

a4
. (67)

So if a3 = 0, then

b2 = −2a4 , b1 = 0 , b0 = −a2

2
,

d0 = c , d1 = ±2
√

a4 , (68)

and if we let the arbitrary constant a1 = 0, then the trans-
formation (3) takes the following form

y′2 = a0 + a2y
2 + a4y

4 , (69)

which has many more kinds of solutions, some of which
we will show next.
Case A Consider a0 = 0, then

y′2 = a2y
2 + a4y

4 , (70)

we have two kinds of solutions.
(i) If a2 > 0 and a4 > 0, the solution is

y = ±
√

a2

a4
csch (

√
a2 ξ) , (71)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2

= −a2

2
− 2a2csch 2(

√
a2 ξ) , (72)

u = d0 + d1y

= c± 2
√

a4y = c± 2
√

a2 csch (
√

a2 ξ) . (73)

(ii) If a2 < 0 and a4 > 0, the solution is

y = ±
√
−a2

a4
csc (

√
−a2 ξ) , (74)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2

= − a2

2
+ 2a2 csc 2(

√
−a2 ξ) , (75)

u = d0 + d1y = c± 2
√

a4y

= c± 2
√
−a2 csc (

√
−a2 ξ) . (76)

Case B Consider a0 = a2 = 0 and a4 > 0, so b0 = 0,
then

y = ± 1
√

a4 ξ
, (77)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2 =
2
ξ2

, (78)

u = d0 + d1y = c± 2
√

a4y = c± 2
ξ

. (79)

Case C Consider transformation (69) directly, from
which many more solutions expressed in terms of different
elliptic functions[21] can be got. Here we show some more
generalized solutions.

(i) If a0 = µ2A2, a2 = −µ2(1 + m2), and a4 =
µ2m2/A2, then the solution is

y = A sn (µ ξ,m) , (80)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2 =
µ2(1 + m2)

2
− 2µ2m2sn 2(µ ξ,m) , (81)
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u = d0 + d1y = c± 2
√

a4y = c± 2
√

µ2m2 sn (µ ξ,m) . (82)

(ii) If a0 = µ2m2A2, a2 = −µ2(1 + m2), and a4 = µ2/A2, then the solution is

y = A ns (µ ξ,m) , (83)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2 =
µ2(1 + m2)

2
− 2µ2ns 2(µ ξ,m) , (84)

u = d0 + d1y = c± 2
√

a4y = c± 2
√

µ2 ns (µ ξ,m) . (85)

(iii) If a0 = −µ2m2A2, a2 = µ2(2m2 − 1), and a4 = µ2(1−m2)/A2, then the solution is

y = A nc (µ ξ,m) , (86)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2 = −µ2(2m2 − 1)
2

− 2µ2(1−m2) nc 2(µ ξ,m) , (87)

u = d0 + d1y = c± 2
√

a4y = c± 2
√

µ2(1−m2) nc (µ ξ,m) . (88)

(iv) If a0 = µ2A2, a2 = µ2(2−m2), and a4 = µ2(1−m2)/A2, then the solution is

y = A sc (µ ξ,m) , (89)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2 = −µ2(2−m2)
2

− 2µ2(1−m2) sc 2(µ ξ,m) , (90)

u = d0 + d1y = c± 2
√

a4y = c± 2
√

µ2(1−m2) sc (µ ξ,m) . (91)

(v) If a0 = µ2(1−m2)A2, a2 = µ2(2−m2), and a4 = µ2/A2, then the solution is

y = A cs (µ ξ,m) , (92)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2 = −µ2(2−m2)
2

− 2µ2cs 2(µ ξ,m) , (93)

u = d0 + d1y = c± 2
√

a4y = c± 2
√

µ2 cs (µ ξ,m) . (94)

(vi) If a0 = µ2A2, a2 = −µ2(1 + m2), and a4 = µ2m2/A2, then the solution is

y = A cd (µ ξ,m) , (95)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2 =
µ2(1 + m2)

2
− 2µ2m2cd 2(µ ξ,m) , (96)

u = d0 + d1y = c± 2
√

a4y = c± 2
√

µ2m2 cd (µ ξ,m) . (97)

(vii) If a0 = µ2m2(m2 − 1)A2, a2 = µ2(2m2 − 1), and a4 = µ2/A2, then the solution is

y = A ds (µ ξ,m) , (98)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2 = −µ2(2m2 − 1)
2

− 2µ2ds 2(µ ξ,m) , (99)

u = d0 + d1y = c± 2
√

a4y = c± 2
√

µ2 ds (µ ξ,m) . (100)

(viii) If a0 = µ2m2A2, a2 = −µ2(1 + m2), and a4 = µ2/A2, then the solution is

y = A dc (µ ξ,m) , (101)

and

H = b0 + b2y
2 = −a2

2
− 2a4y

2 =
µ2(1 + m2)

2
− 2µ2dc 2(µ ξ,m) , (102)
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u = d0 + d1y = c± 2
√

a4y = c± 2
√

µ2 dc (µ ξ,m) . (103)

where A and µ are constants.

4 Coupled Nonlinear Klein Gordon
Schrödinger Equations
Coupled nonlinear Klein–Gordon Schrödinger equa-

tions reads

utt − c2
0uxx + f2

0 u− γ|v|2 = 0 ,

ivt + αvxx + βuv = 0 . (104)

We solve Eqs. (104) in the following frame,

u = u(ξ) , v = φ(ξ) e i(kx−ωt) , ξ = p(x− cgt) . (105)

Substituting Eq. (105) into Eqs. (104) leads to

p2(c2
g − c2

0)u
′′ + f2

0 u− γφ2 = 0 ,

αp2φ′′ + ip(2αk − cg)φ′ + (ω − αk2)φ + βuφ = 0 . (106)

Set cg = 2αk, ω − αk2 = −δ, then one has

u′′ + f1u− γ1φ
2 = 0 , φ′′ − δ1φ + β1uφ = 0 , (107)

where

f1 =
f2
0

p2(c2
g − c2

0)
, γ1 =

γ

p2(c2
g − c2

0)
,

δ1 =
δ

αp2
, β1 =

β

αp2
. (108)

Similarly, we assume that the solutions of Eqs. (107)
take the form of Eq. (65), we can get n1 = n2 = 2 for
Eqs. (107), i.e.,

u = b0 + b1y + b2y
2 , φ = d0 + d1y + d2y

2 ,

b2 6= 0 , d2 6= 0 , (109)

where y satisfies elliptic equation (3). Then substituting
Eq. (109) into Eqs. (107) leads to

b2 = −6a4

β1
, b1 = −3a3

β1
,

b0 =
1
β1

[
δ1 +

f1

2
+

3a2
3

8a4
− 2a2

]
, (110)

and

d2 = ± 6a4√
−β1γ1

, d1 = ± 3a3√
−β1γ1

,

d0 = ± 1√
−β1γ1

[
2a2 +

f1

2
− 3a2

3

8a4

]
. (111)

If a3 = 0, then b1 = d1 = a1 = 0 and

b0 =
1
β1

[
δ1 +

f1

2
− 2a2

]
,

d0 = ± 1√
−β1γ1

[
2a2 +

f1

2

]
, (112)

then the transformation takes the following form,

y′2 = a0 + a2u
2 + a4u

4 . (113)

This is elliptic equation, and it also has many more kinds
of solutions, some of which we will show next.
Case A Consider a0 = 0, then we have two kinds of
solutions.

(i) If a2 > 0 and a4 > 0, the solution is

y = ±
√

a2

a4
csch (

√
a2 ξ) , (114)

and

u = b0 −
6a4

β1
y2 = b0 −

6a2

β1
csch 2(

√
a2 ξ) , (115)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6a2√
−β1γ1

csch 2(
√

a2 ξ)
]
e i(kx−ωt) . (116)

(ii) If a2 > 0 and a4 < 0, the solution is

y = ±
√
−a2

a4
sech (

√
a2 ξ) , (117)

and

u = b0 −
6a4

β1
y2 = b0 +

6a2

β1
sech 2(

√
a2 ξ) , (118)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6a2√
−β1γ1

sech 2(
√

a2 ξ)] e i(kx−ωt) . (119)

Case B The ansatz just takes the form of Eq. (113),
and there exist many more kinds of solutions expressed
in terms of different Jacobi elliptic functions.[21] We show
some generalized solutions just like what we have done in
the former section next.

(i) If a0 = µ2A2, a2 = −µ2(1 + m2), and a4 =
µ2m2/A2, then the solution is

y = A sn (µ ξ,m) , (120)

and

u = b0 −
6a4

β1
y2 = b0 −

6µ2m2

β1
sn 2(µ ξ,m) , (121)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2m2

√
−β1γ1

sn 2(µ ξ,m)
]
e i(kx−ωt) . (122)

(ii) If a0 = µ2(1 − m2)A2, a2 = µ2(2m2 − 1), and
a4 = −µ2m2/A2, then the solution is

y = A cn (µ ξ,m) , (123)

and

u = b0 −
6a4

β1
y2 = b0 +

6µ2m2

β1
cn 2(µ ξ,m) , (124)
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v =
[
d0 ±

6µ2m2

√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6a4√
−β1γ1

cn 2(µ ξ,m)
]
e i(kx−ωt) . (125)

(iii) If a0 = µ2(1 − m2)A2, a2 = µ2(2 − m2), and
a4 = −µ2/A2, then the solution is

y = A dn (µ ξ,m) , (126)

and

u = b0 −
6a4

β1
y2 = b0 +

6µ2

β1
dn 2(µ ξ,m) , (127)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2

√
−β1γ1

dn 2(µ ξ,m)
]
e i(kx−ωt) . (128)

(iv) If a0 = µ2m2A2, a2 = −µ2(1 + m2), and a4 =
µ2/A2, then the solution is

y = A ns (µ ξ,m) , (129)

and

u = b0 −
6a4

β1
y2 = b0 −

6µ2

β1
ns 2(µ ξ,m) , (130)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2

√
−β1γ1

ns 2(µ ξ,m)
]
e i(kx−ωt) . (131)

(v) If a0 = −µ2m2A2, a2 = µ2(2m2 − 1), and a4 =
µ2(1−m2)/A2, then the solution is

y = A nc (µ ξ,m) , (132)

and

u = b0 −
6a4

β1
y2 = b0 −

6µ2(1−m2)
β1

nc 2(µ ξ,m) , (133)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2(1−m2)√
−β1γ1

nc 2(µ ξ,m)
]
e i(kx−ωt) . (134)

(vi) If a0 = −µ2A2, a2 = µ2(2 − m2), and a4 =
µ2(m2 − 1)/A2, then the solution is

y = A nd (µ ξ,m) , (135)

and

u = b0−
6a4

β1
y2 = b0−

6µ2(m2 − 1)
β1

nd 2(µ ξ,m) , (136)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2(m2 − 1)√
−β1γ1

nd 2(µ ξ,m)
]
e i(kx−ωt) . (137)

(vii) If a0 = µ2A2, a2 = µ2(2 − m2), and a4 =
µ2(1−m2)/A2, then the solution is

y = A sc (µ ξ,m) , (138)

and

u = b0−
6a4

β1
y2 = b0−

6µ2(1−m2)
β1

sc 2(µ ξ,m) , (139)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2(1−m2)√
−β1γ1

sc 2(µ ξ,m)
]
e i(kx−ωt) . (140)

(viii) If a0 = µ2A2, a2 = µ2(2m2 − 1), and a4 =
µ2(m2 − 1)m2/A2, then the solution is

y = A sd (µ ξ,m) , (141)

and

u = b0−
6a4

β1
y2 = b0−

6µ2(m2 − 1)m2

β1
sd 2(µ ξ,m) , (142)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2(m2 − 1)m2

√
−β1γ1

sd 2(µ ξ,m)
]
e i(kx−ωt) . (143)

(ix) If a0 = µ2(1 − m2)A2, a2 = µ2(2 − m2), and
a4 = µ2/A2, then the solution is

y = A cs (µ ξ,m) , (144)

and

u = b0 −
6a4

β1
y2 = b0 −

6µ2

β1
cs 2(µ ξ,m) , (145)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2

√
−β1γ1

cs 2(µ ξ,m)
]
e i(kx−ωt) . (146)

(x) If a0 = µ2A2, a2 = −µ2(1 + m2), and a4 =
µ2m2/A2, then the solution is

y = A cd (µ ξ,m) , (147)

and

u = b0 −
6a4

β1
y2 = b0 −

6µ2m2

β1
cd 2(µ ξ,m) , (148)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2m2

√
−β1γ1

cd 2(µ ξ,m)
]
e i(kx−ωt) . (149)

(xi) If a0 = µ2m2(m2 − 1)A2, a2 = µ2(2m2 − 1), and
a4 = µ2/A2, then the solution is

y = A ds (µ ξ,m) , (150)

and

u = b0 −
6a4

β1
y2 = b0 −

6µ2

β1
ds 2(µ ξ,m) , (151)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)
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=
[
d0 ±

6µ2

√
−β1γ1

ds 2(µ ξ,m)
]
e i(kx−ωt) . (152)

(xii) If a0 = µ2m2A2, a2 = −µ2(1 + m2), and a4 =
µ2/A2, then the solution is

y = A dc (µ ξ,m) , (153)

and

u = b0 −
6a4

β1
y2 = b0 −

6µ2

β1
dc 2(µ ξ,m) , (154)

v =
[
d0 ±

6a4√
−β1γ1

y2
]
e i(kx−ωt)

=
[
d0 ±

6µ2

√
−β1γ1

dc 2(µ ξ,m)
]
e i(kx−ωt) . (155)

Of course, we can have more solutions if we do not
take a3 = 0, but we do not discuss this here for senten-
tiousness. In this section, we got more kinds of periodic
solutions, solitary wave solutions, rational solutions, and
so on. Moreover, we got more kinds of envelope periodic
solutions, envelope solitary wave solutions, envelope ratio-
nal solutions, and so on. Similarly, these solutions can be
applied to explain some nonlinear phenomena, especially
in optical fibre communications and others.

5 Conclusion
In this paper, we consider elliptic equation as a new

transformation and propose a new method to solve cou-
pled nonlinear systems, more kinds of solutions can be got

there, including rational solutions, solitary wave solutions
constructed in terms of hyperbolic functions, periodic so-
lutions expressed in terms of trigonometric functions, and
periodic solutions dealing with elliptic functions. Here
we got more new periodic solutions expressed in terms of
function of Jacobi elliptic sine function and/or Jacobi el-
liptic cosine function and/or Jacobi elliptic function of the
third kind, these solutions are not given in literatures to
our knowledge.

If a4 = 1 and a0 = a2
2/4 in Eq. (69) or (113), then

y′ =
a2

2
+ y2 , (156)

which just recovers transformation (1) given by Fan.[8]

And if we take a0 = R2, a2 = 2µR2, and a4 = µ2R2, then
transformation (69) or (113) also recovers the transforma-
tion (2) given by Yan.[10] So it is obvious that transfor-
mations (1) and (2) are just special cases of Eq. (3). But,
applying transformations (1) and (2) to solve nonlinear
wave equations, the periodic solutions expressed in terms
of elliptic functions cannot be obtained. And application
of transformation (3) to some coupled nonlinear systems,
the obtained solutions consist of those from the hyper-
bolic tangent expansion method,[8,9,11] the Jacobi elliptic
function expansion method,[12,13] the nonlinear transfor-
mation method,[14,15] and the trial function method,[16,17]

so it can be taken as a unified method, and more appli-
cations to solve other nonlinear wave equations are also
applicable.
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