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Abstract

In this paper, based on the Lame function and Jacobi elliptic function, the perturbation method is applied to some
nonlinear evolution equations, and there many multi-order solutions are derived to these nonlinear evolution equa-
tions.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

To find the exact solutions of nonlinear evolution equations plays an important role in nonlinear studies. Applying
some new methods, such as the homogeneous balance method [1-3], the hyperbolic tangent function expansion method
[4-6], the nonlinear transformation method [7,8], the trial function method [9,10], sine—cosine method [11], the Jacobi
elliptic function expansion method [12,13] and so on [14-16], many exact solutions are obtained, from which rich
structures are shown to exist in different nonlinear wave equations. Furthermore, in order to discuss the stability of
theses solutions, one must superimpose a small disturbance on these solutions and analyze the evolution of the small
disturbance [18,19]. This is equivalent to the solutions of nonlinear evolution equations expanded as a power series in
terms of a small parameter € and then multi-order exact solutions are derived. In this paper, using the Jacobi elliptic
function expansion method, the multi-order exact solutions of some nonlinear evolution equations are obtained by
means of the Jacobi elliptic functions and Lame function [17,18].

2. Lame functions

Usually, Lame equation [17] in terms of y(x) can be written as

dzy X
@—i-[/u—n(n—o—l)mzsnzx]yzo (1)
where /A is an eigenvalue, n is a positive integer, snx is the Jacobi elliptic sine function with its modulus m (0 < m < 1).
Set

n=sn’x 2)
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then the Lame equation (1) becomes

d’y 1(1 1 1 )dy p+n(n+ 1)y

— 4| = —= 0 3

dp2  2\n n-1 dp~ dntr—Dn—h" ~ ®
where

h=m?2>1, pu=—hi “4)

Eq. (3) is a kind of Fuchs-typed equations with four regular singular points # = 0, 1,4 and 5 = oo, the solution to
Lame equation (3) is known as Lame function.
For example, when n =3, 1 = 4(1 +m?), i.e. p = —4(1 + m~2), the Lame function is

Ly(x) = n'»(1 = n)"*(1 = ™ 'y)""* = snxcnxdnx (5)
When n =2, A=1+m?, ie. u=—(1 +m2), the Lame function is
Ly(x) = (1—=n)"*(1 = n'p)"* = cnxdnx (6)

In Egs. (5) and (6), cnx and dnx are the Jacobi elliptic cosine function and the Jacobi elliptic function of the third kind
[17,18], respectively. In the next sections, we will apply these two kinds of Lame functions L;(x) and L,(x) to solve
nonlinear evolution equations and to derive their corresponding multi-order exact solutions.

3. Multi-order exact solutions with L;(x)

In this case, the Lame equation (1) reduces to

2
%+ [4(1 + m?) — 12m*sn’x]y = 0 (7)

here n = 3 and Z = 4(1 + m?) is chosen for (1) and the solution to (7) is (5). Next, we will illustrate the application of (7)
to solve some nonlinear evolution equations.

3.1. Boussinesq equation

Boussinesq equation reads

62 62 64 622
Qs —aa e =0 (8)

w2 e Yo Pae
We seek its travelling wave solutions of the following form
u=u(f), &=k(x—ct) 9)

where k and ¢ are wave number and wave speed, respectively.
Substituting (9) into (8), we have
d4 d%? d’u

ClE g~ (@ - =0 (10)

Integrating (10) twice with respect to ¢ and taking the integration constants as zero, we get
2

,du
ok T B (@ =0 (11)
Here we consider perturbation method and setting

U=+ eu +uy + - (12)

where €(0 < € < 1) is a small parameter, u,, u; and u, represent the zeroth-order, first-order and second-order solu-
tions, respectively.
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Substituting (12) into (11), we derive the following systems of the zeroth-order, the first-order and the second-order
equations:

&
e akzﬁuf + i — (= g =0 (13)
1 > duy 2_ 2
€ ok e + [2fuo — (¢* — ¢p)Jus =0 (14)
and
& ak2@ + [2Buy — (¢* — Q)]uy = —pu} (15)
. d(fz 0 0 2 = 1

The zeroth-order equation (13) can be solved by the Jacobi elliptic sine function expansion method, the ansatz
solution

u0:a0+alsnf+azsn2§ (16)

can be assumed.
Substituting (16) into (13), the expansion coefficients ay, a; and a, can be easily determined as

A —c  6u 60
_ %1 2\7.2 _ _ 0% 22 1
ay 35 —0—!3(—0—m)k7 a=0, a /))mk (17)
so the zeroth-order exact solution is

A —c  6u 6o

up = =24 — (1 + mHk* — — m’k*sn* ¢ 18
=gy TpUTmE g (18)
Substituting the zeroth-order exact solution (18) into the first-order equation (14) yields

duy 2 2 o2

obviously this is just a Lame equation as (7) with n = 3 and A = 4(1 + m?), so its solution is
u; = ALy(¢) = Asnéenédn’ (20)
where 4 is an arbitrary constant and (20) is the first-order exact solution of Boussinesq equation (8).

In order to solve the second-order equation (15), the zeroth-order exact solution (18) and the first-order exact so-
lution (20) have to be substituted into (15), thus the second-order equation (15) is rewritten as
d’u, pA2

c2
@ + [4(1 4 m?*) — 12m*sn® {Juy = —Wsnzfcnzgdn & (21)

it is obvious that this is an inhomogeneous Lame equation with n = 3 and A = 4(1 + m?). Its solution of homogeneous
equation is just the same one as (20) and its special solution of inhomogeneous terms can be assumed to be

Uy = by + bysn® & + bysn* & (22)

Substituting (22) into (21), we can determine the expansion coefficients by, b, and b, as

B BA? (L4 m*)p4a?  pa?
b= e T e T R 23)
so the second-order exact solution of Boussinesq equation (8) can be written as
Uy = — pae [1 = 2(1 + m?)sn® € + 3m*sn* ¢] (24)
24m?ak?

3.2. KdV equation

KdV equation reads

Ou Ou u
— U+

o i e =0 (25)
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Substituting (9) into (25) yields

du  du
27 e
Bk +u ¢ i 0 (26)

Integrating (26) once with respect to ¢ and taking integration constant as zero, we have

ﬁzd—ferlu —cu=0 (27)

Substituting (12) into (27), we get the zeroth-order, the first-order and the second-order equations:

d Ug 1
& pREF— a2 += ”o cuy =0 (28)
d*u
e pi? dvzl (up — c)uy =0 (29)
and
d*u 1
e e _dézz + (4o — cuy = —5“% (30)
Applying (16) to (18), the zeroth-order exact solution can be easily obtained
uy = c +4(1 + m?)pi*> — 12m* fk* sn? ¢ (31)
Similarly, substituting (31) into the first-order equation (29) leads to
dzul 2 2
d52+[41+m)—12m sn”&u; =0 (32)

obviously this is the Lame equation, its solution is
=Asnécnédné (33)
where 4 is an arbitrary constant.

Substituting the zeroth-order solution (31) and the first-order solution (33) into the second-order equation (30)
results in

2
du2 2

re + [4(1 + m?) — 12m?sn* {Juy = ~2e sn’ ¢en® Edn® ¢ (34)

Then applying (22) to (34), the second-order exact solution of KdV equation (25) can be written as
A2

prmeyE [1—2(1 4+ m®)sn®& 4 3m>sn*¢] (35)

Uy = —

4. Multi-order exact solutions with L,(x)

In this case, the Lame equation (1) reduces to
dzy
a2

here n =2 and /4 = 1 4+ m? is chosen for (1) and the solution to (36) is (6). Next, we will illustrate the application of
(36) to solve some other nonlinear evolution equations.

+[(1 +m?) — 6m*sn’x]y = 0 (36)

4.1. mBBM equation

Modified Benjamin-Bona-Mahony (mBBM) equation reads

6u+c %+u26u+ﬁ Ou
’ oo

FTR (37)
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Seeking its travelling wave solution in the frame of (9), so we have
3

o Jdu | ,du , du
(co—c)dé—i-u az ﬁkcd?,

0 (38)

which can be integrated once with respect to £ and the integration constant is taken to be zero to reach its another form

ﬂzz

. (39

Considering the perturbation method and (12) and (39) can be expanded as multi-order equations and the first three
order equations are

duy 1
& pkc d? - gug +(c—coug=0 (40)
d2
¢ Bk*c d!zl — [ = (c—co)juy =0 (41)
and
2 2 d*uy 2 2
e€: Pk Cd—fz — [ug — (¢ — co)Jur = upuy (42)

From the zeroth-order equation (40) and the ansatz solution

uy = ap + ay Sl’lé (43)

we can get the zeroth-order exact solution of mBBM equation

= \/6m2fcksné, ¢ —cy= (1 +m*)pkc (44)
Substituting the zeroth-order exact solution (44) into the first-order equation (41) leads to
d2
E“‘ [(1+m?) — 6m*sn? Euy = 0 (45)

which takes the same form as Lame equation (36), so the first-order exact solution can be written as
uy = ALy (¢) = Acnédné (46)

where 4 is an arbitrary constant.
Substituting the zeroth-order exact solution (44) and the first-order exact solution (46) into the second-order
equation (41) results in

2
‘iiéuz [(1 +m?) — 6m® 5n25]u2 \/7—sngcn &dn’¢ (47)

which is an inhomogeneous Lame equation of the form (36), and it can be solved by introducing an ansatz solution
Uy = bysné +bysn’é (48)

Combining (47) with (48) reaches the second-order exact solution

2 2
"y — 6 (1+m*)4 5{1_ 2m

2
Be  12mk Txm ™ 4 (49)

4.2. mKdV equation

mKdV equation reads

6u

at + po- (50)

@xz
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In the frame of (9) and (50) can be written as
d*u o«
2 3
SR = 1
pk déz+3u cu=0 (51)

where integration with respect to ¢ has been taken once and the integration constant is set as zero.
Applying the perturbation method to (51), we can derive the zeroth-order, the first-order and the second-order
equations as

& B2 C:glzo + %ué —cup=0 (52)

e ﬁkzc(iiz—g; + (o — c)uy =0 (53)
and

€ ﬂkz(:—gzz + (owy — ¢)uy = —owprs? (54)

Similarly, from (43) and the zeroth-order equation (52), the zeroth-order exact solution is derived as

i ::I:\/—%))mksné (55)

Substituting (55) into the first-order equation (53) leads to the first-order exact solution
uy =Acenédné (56)

where A4 is an arbitrary constant.
Combining (48), (55) and (56) with (54) gives the second-order exact solution of mKdV

| 60 (1 + m?)4> 2m?
w, = F _%%sng[l—lf’nzsnﬂ (57)

5. Conclusion and discussion

In this paper, the Lame equation and Lame functions are applied to solve nonlinear evolution equations. When
perturbation method and two kinds of Lame functions L;(x) and L,(x) are considered, then the multi-order solutions
are obtained for these nonlinear evolution equations. The results obtained in this paper are very important for non-
linear instability analysis of nonlinear coherent structures.
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