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Abstract

In this paper, based on the Lame function and Jacobi elliptic function, the perturbation method is applied to some

nonlinear evolution equations, and there many multi-order solutions are derived to these nonlinear evolution equa-

tions.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

To find the exact solutions of nonlinear evolution equations plays an important role in nonlinear studies. Applying

some new methods, such as the homogeneous balance method [1–3], the hyperbolic tangent function expansion method

[4–6], the nonlinear transformation method [7,8], the trial function method [9,10], sine–cosine method [11], the Jacobi

elliptic function expansion method [12,13] and so on [14–16], many exact solutions are obtained, from which rich

structures are shown to exist in different nonlinear wave equations. Furthermore, in order to discuss the stability of

theses solutions, one must superimpose a small disturbance on these solutions and analyze the evolution of the small

disturbance [18,19]. This is equivalent to the solutions of nonlinear evolution equations expanded as a power series in

terms of a small parameter � and then multi-order exact solutions are derived. In this paper, using the Jacobi elliptic

function expansion method, the multi-order exact solutions of some nonlinear evolution equations are obtained by

means of the Jacobi elliptic functions and Lame function [17,18].
2. Lame functions

Usually, Lame equation [17] in terms of yðxÞ can be written as
* Co
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d2y
dx2

þ ½k� nðnþ 1Þm2 sn2 x�y ¼ 0 ð1Þ
where k is an eigenvalue, n is a positive integer, snx is the Jacobi elliptic sine function with its modulus m (0 < m < 1).

Set
g ¼ sn2 x ð2Þ
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then the Lame equation (1) becomes
d2y
dg2

þ 1
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g

�
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g� 1
þ 1

g� h

�
dy
dg

� lþ nðnþ 1Þg
4gðg� 1Þðg� hÞ y ¼ 0 ð3Þ
where
h ¼ m�2 > 1; l ¼ �hk ð4Þ
Eq. (3) is a kind of Fuchs-typed equations with four regular singular points g ¼ 0; 1; h and g ¼ 1, the solution to

Lame equation (3) is known as Lame function.

For example, when n ¼ 3, k ¼ 4ð1þ m2Þ, i.e. l ¼ �4ð1þ m�2Þ, the Lame function is
L3ðxÞ ¼ g1=2ð1� gÞ1=2ð1� h�1gÞ1=2 ¼ snxcnxdnx ð5Þ
When n ¼ 2, k ¼ 1þ m2, i.e. l ¼ �ð1þ m�2Þ, the Lame function is
L2ðxÞ ¼ ð1� gÞ1=2ð1� h�1gÞ1=2 ¼ cnxdnx ð6Þ
In Eqs. (5) and (6), cnx and dnx are the Jacobi elliptic cosine function and the Jacobi elliptic function of the third kind

[17,18], respectively. In the next sections, we will apply these two kinds of Lame functions L3ðxÞ and L2ðxÞ to solve

nonlinear evolution equations and to derive their corresponding multi-order exact solutions.
3. Multi-order exact solutions with L3(x)

In this case, the Lame equation (1) reduces to
d2y
dx2

þ ½4ð1þ m2Þ � 12m2 sn2 x�y ¼ 0 ð7Þ
here n ¼ 3 and k ¼ 4ð1þ m2Þ is chosen for (1) and the solution to (7) is (5). Next, we will illustrate the application of (7)

to solve some nonlinear evolution equations.

3.1. Boussinesq equation

Boussinesq equation reads
o2u
ot2

� c20
o2u
ox2

� a
o4u
ox4

� b
o2u2

ox2
¼ 0 ð8Þ
We seek its travelling wave solutions of the following form
u ¼ uðnÞ; n ¼ kðx� ctÞ ð9Þ
where k and c are wave number and wave speed, respectively.

Substituting (9) into (8), we have
ak2
d4u

dn4
þ b

d2u2

dn2
� ðc2 � c20Þ

d2u

dn2
¼ 0 ð10Þ
Integrating (10) twice with respect to n and taking the integration constants as zero, we get
ak2
d2u

dn2
þ bu2 � ðc2 � c20Þu ¼ 0 ð11Þ
Here we consider perturbation method and setting
u ¼ u0 þ �u1 þ �2u2 þ � � � ð12Þ
where �ð0 < � � 1Þ is a small parameter, u0, u1 and u2 represent the zeroth-order, first-order and second-order solu-

tions, respectively.
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Substituting (12) into (11), we derive the following systems of the zeroth-order, the first-order and the second-order

equations:
�0 : ak2
d2u0
dn2

þ bu20 � ðc2 � c20Þu0 ¼ 0 ð13Þ

�1 : ak2
d2u1
dn2

þ ½2bu0 � ðc2 � c20Þ�u1 ¼ 0 ð14Þ
and
�2 : ak2
d2u2
dn2

þ ½2bu0 � ðc2 � c20Þ�u2 ¼ �bu21 ð15Þ

e zeroth-order equation (13) can be solved by the Jacobi elliptic sine function expansion method, the ansatz
Th

solution
u0 ¼ a0 þ a1 snnþ a2 sn2 n ð16Þ

can be assumed.

Substituting (16) into (13), the expansion coefficients a0, a1 and a2 can be easily determined as
a0 ¼
c2 � c20
2b

þ 6a
b
ð1þ m2Þk2; a1 ¼ 0; a2 ¼ � 6a

b
m2k2 ð17Þ
so the zeroth-order exact solution is
u0 ¼
c2 � c20
2b

þ 6a
b
ð1þ m2Þk2 � 6a

b
m2k2 sn2 n ð18Þ

bstituting the zeroth-order exact solution (18) into the first-order equation (14) yields
Su
d2u1
dn2

þ ½4ð1þ m2Þ � 12m2 sn2 n�u1 ¼ 0 ð19Þ
obviously this is just a Lame equation as (7) with n ¼ 3 and k ¼ 4ð1þ m2Þ, so its solution is
u1 ¼ AL3ðnÞ ¼ A snncnndnn ð20Þ
where A is an arbitrary constant and (20) is the first-order exact solution of Boussinesq equation (8).

In order to solve the second-order equation (15), the zeroth-order exact solution (18) and the first-order exact so-

lution (20) have to be substituted into (15), thus the second-order equation (15) is rewritten as
d2u2
dn2

þ ½4ð1þ m2Þ � 12m2 sn2 n�u2 ¼ � bA2

ak2
sn2 ncn2 ndn2 n ð21Þ
it is obvious that this is an inhomogeneous Lame equation with n ¼ 3 and k ¼ 4ð1þ m2Þ. Its solution of homogeneous

equation is just the same one as (20) and its special solution of inhomogeneous terms can be assumed to be
u2 ¼ b0 þ b2 sn2 nþ b4 sn4 n ð22Þ
Substituting (22) into (21), we can determine the expansion coefficients b0, b2 and b4 as
b0 ¼ � bA2

24m2ak2
; b2 ¼

ð1þ m2ÞbA2

12m2ak2
; b4 ¼ � bA2

8ak2
ð23Þ
so the second-order exact solution of Boussinesq equation (8) can be written as
u2 ¼ � bA2

24m2ak2
½1� 2ð1þ m2Þ sn2 nþ 3m2 sn4 n� ð24Þ
3.2. KdV equation

KdV equation reads
ou
ot

þ u
ou
ox

þ b
o3u
ox3

¼ 0 ð25Þ



798 S. Liu et al. / Chaos, Solitons and Fractals 19 (2004) 795–801
Substituting (9) into (25) yields
bk2
d3u

dn3
þ u

du
dn

� c
du
dn

¼ 0 ð26Þ
Integrating (26) once with respect to n and taking integration constant as zero, we have
bk2
d2u

dn2
þ 1

2
u2 � cu ¼ 0 ð27Þ
Substituting (12) into (27), we get the zeroth-order, the first-order and the second-order equations:
�0 : bk2
d2u0
dn2

þ 1

2
u20 � cu0 ¼ 0 ð28Þ

�1 : bk2
d2u1
dn2

þ ðu0 � cÞu1 ¼ 0 ð29Þ
and
�2 : bk2
d2u2
dn2

þ ðu0 � cÞu2 ¼ � 1

2
u21 ð30Þ

plying (16) to (18), the zeroth-order exact solution can be easily obtained
Ap
u0 ¼ cþ 4ð1þ m2Þbk2 � 12m2bk2 sn2 n ð31Þ
Similarly, substituting (31) into the first-order equation (29) leads to
d2u1
dn2

þ ½4ð1þ m2Þ � 12m2 sn2 n�u1 ¼ 0 ð32Þ
obviously this is the Lame equation, its solution is
u1 ¼ A snncnndnn ð33Þ
where A is an arbitrary constant.

Substituting the zeroth-order solution (31) and the first-order solution (33) into the second-order equation (30)

results in
d2u2
dn2

þ ½4ð1þ m2Þ � 12m2 sn2 n�u2 ¼ � A2

2bk2
sn2 ncn2 ndn2 n ð34Þ
Then applying (22) to (34), the second-order exact solution of KdV equation (25) can be written as
u2 ¼ � A2

48m2bk2
½1� 2ð1þ m2Þ sn2 nþ 3m2 sn4 n� ð35Þ
4. Multi-order exact solutions with L2(x)

In this case, the Lame equation (1) reduces to
d2y
dx2

þ ½ð1þ m2Þ � 6m2 sn2 x�y ¼ 0 ð36Þ
here n ¼ 2 and k ¼ 1þ m2 is chosen for (1) and the solution to (36) is (6). Next, we will illustrate the application of

(36) to solve some other nonlinear evolution equations.

4.1. mBBM equation

Modified Benjamin–Bona–Mahony (mBBM) equation reads
ou
ot

þ c0
ou
ox

þ u2
ou
ox

þ b
o3u
ox2 ot

¼ 0 ð37Þ
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Seeking its travelling wave solution in the frame of (9), so we have
ðc0 � cÞdu
dn

þ u2
du
dn

� bk2c
d3u

dn3
¼ 0 ð38Þ
which can be integrated once with respect to n and the integration constant is taken to be zero to reach its another form
bk2c
d2u

dn2
� 1

3
u3 þ ðc� c0Þu ¼ 0 ð39Þ

nsidering the perturbation method and (12) and (39) can be expanded as multi-order equations and the first three
Co

order equations are
�0 : bk2c
d2u0
dn2

� 1

3
u30 þ ðc� c0Þu0 ¼ 0 ð40Þ

�1 : bk2c
d2u1
dn2

� ½u20 � ðc� c0Þ�u1 ¼ 0 ð41Þ
and
�2 : bk2c
d2u2
dn2

� ½u20 � ðc� c0Þ�u2 ¼ u0u21 ð42Þ
From the zeroth-order equation (40) and the ansatz solution
u0 ¼ a0 þ a1 snn ð43Þ
we can get the zeroth-order exact solution of mBBM equation
u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6m2bc

p
k snn; c� c0 ¼ ð1þ m2Þbk2c ð44Þ
Substituting the zeroth-order exact solution (44) into the first-order equation (41) leads to
d2u1
dn2

þ ½ð1þ m2Þ � 6m2 sn2 n�u1 ¼ 0 ð45Þ
which takes the same form as Lame equation (36), so the first-order exact solution can be written as
u1 ¼ AL2ðnÞ ¼ Acnndnn ð46Þ
where A is an arbitrary constant.

Substituting the zeroth-order exact solution (44) and the first-order exact solution (46) into the second-order

equation (41) results in
d2u2
dn2

þ ½ð1þ m2Þ � 6m2 sn2 n�u2 ¼ �

ffiffiffiffiffi
6

bc

s
mA2

k
snncn2 ndn2 n ð47Þ
which is an inhomogeneous Lame equation of the form (36), and it can be solved by introducing an ansatz solution
u2 ¼ b1 snnþ b3 sn3 n ð48Þ
Combining (47) with (48) reaches the second-order exact solution
u2 ¼ �

ffiffiffiffiffi
6

bc

s
ð1þ m2ÞA2

12mk
snn 1

�
� 2m2

1þ m2
sn2 n

�
ð49Þ
4.2. mKdV equation

mKdV equation reads
ou
ot

þ au2
ou
ox

þ b
o3u
ox3

¼ 0 ð50Þ
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In the frame of (9) and (50) can be written as
bk2
d2u

dn2
þ a
3
u3 � cu ¼ 0 ð51Þ
where integration with respect to n has been taken once and the integration constant is set as zero.

Applying the perturbation method to (51), we can derive the zeroth-order, the first-order and the second-order

equations as
�0 : bk2
d2u0
dn2

þ a
3
u30 � cu0 ¼ 0 ð52Þ

�1 : bk2
d2u1
dn2

þ ðau20 � cÞu1 ¼ 0 ð53Þ
and
�2 : bk2
d2u2
dn2

þ ðau20 � cÞu2 ¼ �au0u21 ð54Þ
Similarly, from (43) and the zeroth-order equation (52), the zeroth-order exact solution is derived as
u0 ¼ �
ffiffiffiffiffiffiffiffiffiffi
� 6b

a

r
mk snn ð55Þ
Substituting (55) into the first-order equation (53) leads to the first-order exact solution
u1 ¼ Acnndnn ð56Þ
where A is an arbitrary constant.

Combining (48), (55) and (56) with (54) gives the second-order exact solution of mKdV
u2 ¼ �

ffiffiffiffiffiffiffiffiffiffi
� 6a

b

s
ð1þ m2ÞA2

12mk
snn 1

�
� 2m2

1þ m2
sn2 n

�
ð57Þ
5. Conclusion and discussion

In this paper, the Lame equation and Lame functions are applied to solve nonlinear evolution equations. When

perturbation method and two kinds of Lame functions L3ðxÞ and L2ðxÞ are considered, then the multi-order solutions

are obtained for these nonlinear evolution equations. The results obtained in this paper are very important for non-

linear instability analysis of nonlinear coherent structures.
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