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Abstract

On the basis of analysis to the projective Riccati equations, an intermediate transformation in expansion method is
constructed. And this transformation is applied to solve Gardner equation, there many new kinds of travelling wave
solutions including solitary wave solution are obtained, in which some are found for the first time.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The Gardner equation reads
u, + yuuy + (xuzux + ﬁuxxx =0 (1)

where y, o and f§ are real constants, and u is a real function. Eq. (1) is also called combined KdV-mKdV equation, and it
is widely applied in various branches of physics, such as solid-state physics, plasma physics, fluid physics, quantum field
theory and so on [1-3]. Many methods have been applied to solved Eq. (1), such as, Wadati’s inverse scattering
transform and Hirota methods [1,2], Coffey’s series expansion method [4], Mohamad’s direct method [5], Lou’s
mapping method [6] and Zhang’s leading-order analysis method and direct method [7]. The application of these
methods results in many kinds of exact solutions, including travelling wave solutions and various types solitary wave
solutions. In this paper, we will apply a new method to solve Eq. (1), there more kinds of solutions are derived, among
them some are found for the first time.

2. Formal solutions to Gardner equation

The travelling wave solutions of Eq. (1) take the following form
u(x,t) =u(é), E=x—ct (2)

where ¢ is wave speed. After substituting Eq. (2) into Eq. (1), we have

—cuz + yuue + ouPug + Puzs: =0 (3)
ie.
—c+%u2+%u3+ﬁu5¢:co (4)

where ¢, is an integration constant.
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In order to solve Eq. (4), a crucial ansatz
=Y T OMS () + Big(E)] + 4o, A)+ B #0 (5)

is introduced, and f(¢) and g(&) are nonzero solutions to the projective Riccati equations [8-10]

1'(€) =pf(0)g(&) (6a)
g(&) =q+pg (&) —rf(9) (6b)
where p # 0 is a real constant, ¢ and r are two real constants. When p = —1 and ¢ = 1, Eqgs. (6) reduce to the coupled

equations given in the references [8,9], and when p = +1 and ¢ > 0, Eqs. (6) reduce to the coupled equations given in the
reference [10].
For Egs. (6), there is a relation between f and g

P46

gzz—é g—2f+7 0 ™

where 6 = +1.

Applying above expansion method, if taking the expansion order of u as O(u) = n and considering the relations (6)
and (7), then we have O(d“) = n+ 1, so partial balance between the highest degree nonlinear term and the highest order
derivative term leads to n = 1. Obviously, the formal solution can be written as

u= Ao+ A f(E) +Big(&), A +BA0 (8)

Considering the relation (7), from Eq. (8) one has

W= {Ag qu} +240B1g + {ZAOAI +2 BZ} f+24,Bifg + [AZ ( +9) BZ} f? 9)
P P Pq
3 3q 2 2 q p3 2 3q 2 6r 2 2r s
= |4} =2 4B}| + |342B) — LB} | g + |3424) — A\ B +—AoB} | f + |6404,B, + —B] | f2
P P P p p
6 37+ 245 32+ _
+ [3A0Af + ;rAle _ uAozaf]fz n [3A§B. G p; )Bf}fzg + {A? _ umgﬂﬁ (10)
and
d? +5 2p(r +
d—; —pgA,f “‘P”Blfg'i‘3!"’/41f2 (rq ) Bif’g — Zd 7 )A1f3 (11)

Substituting Eqgs. (8)—(11) into Eq. (4) yields

3 2
{— cdo+7 <A2 —732) +§ (Ag - ﬁAOBf) - co} + [— ed; + y(zAOA, +;rBf)

3 6r
+§( qu32+ A032+3A2A ) - ﬁqul}ij [_CB] +940B) +§(_1%B?+3A531>}g
2 )
+ {VAlBl +§ (—B% + 6A0A131> + ﬁprBl}fg—k |:% (A% _ (r )Bf>
P P4
6 3 +9 249 28p(2 + 6
+3( it -2 )AOB?HAoAf) +3ﬁprA1}f2+ E (3A?Bl _r )Bf> 2l )Bl}fzg
b re P4 q
3(rr + 6 28p(r* + 6 _
* E (Af ‘%A‘Bﬁ) ‘%A‘]f =0 (12)

The arbitrariness of the argument ¢ results in the following algebraic equations:

A 3
—cdy +§ (Ag ZBZ) +§ (Ag quOBZ) — =0 (13a)
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o q 3 2
—cBy + p4oB; +§(—ng1 +3AOBI> =0 (13c)
o f2r .
yAlBl +§ ;BI + 6AOA1B1 + ﬂp}”Bl =0 (13d)
2 S 2
14 (Af _ o) Bf) 42 (9/113% BEGRD N 3A0A§> 4 3pprd; =0 (13¢)
2 rq 3\p Pq
2 2
%(3/@31_@3?) —MBI:O (13f)
3 rq q
2 2 2
3 q
from which the parameters can be determined, for example, for 6 = —1, there are the following solutions:
Case 1: If A; =0, 4g = — 5, r =0, then
6p c 7
By =4/ — = 14
1 o b Prq 2ﬁ 80([3 ( )
obviously, there is a constraint aff < 0.
Case 2: If A} =0, A4g = — 5, r # 0, then
3pp? 2¢ 7
B = 4/ — == =41 15
i 2w Pt T (15)
obviously, there is the constraint «ff < 0, too.
Case 3: If By =0, 4y = — 3, then
244 p? c 7
A =+ =S = 1
1 40(6-‘—'?27 rq [); 405[37 r 0 ( 6)
Case 4: 1f By =0, Ay # — 5, then
68’ P (1 +2) 7 Be+)r 2c+9)(? -1
A =+ 2 T 4= A = 17
! w2ct+y) 0 0T T2\ 2a(rr2y M B +2) (17)
with constraints » # 0 and »* # 1.
Case 5: If Ay = — 5, 41 # 0, B| # 0, then
- 322 — 1) B 3pp2 2
DI ey BT M g %)

with constraint 72 # 1.
For 6 = 1, there are the following solutions:
Case 1: 1f 4) =0, A4g = — 5, r = 0, then

68p* c 7
By =44/ — =—
1 o b rq Zﬁ 80(B

(19)

obviously, there is the constraint «ff < 0, too.
Case 2: 1If By =0, Ay = — 5, then

248°p? c 9
Ay =+ - =——- =0 20
: 4oc + 92’ P B dap’ " (20)
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Case 3: 1If B; =0, A9 # — 5, then

6P (- 2) _ 7 3r(2c +7) _ (P +1D)(2c+y)
D= ey T T w w2y M T -2

with constraints 7 # 0 and > # 2.

Case 4: If A9 = —5-, A1 # 0, B; # 0, then

3P + 1) 3pp? 2 PP
Ay =£ [T B =y - ==
! drcty 0 DTN T PAT o

Egs. (14)—(22) combining with Eq. (8) reach the formal solutions to Eq. (1).

3. Analysis to the projective Riccati equations

In order to obtain exact solutions to Eq. (1), we must derive the expression of (&) and g(¢&).

Next, we will analyze the solutions to Egs. (6). From Eq. (6a), one has
1f
g§=—=
rf
Substituting Eq. (23) into Eq. (6b) leads to
I =27 =paf* +prf> =0

In order to solve Eq. (24), we introduce the following transformation

then

1
f:_
w
f/f W B 1w
foowh S pw

and

w' + pgw — pr =0

For the solutions to Eq. (27), two basic cases must be considered. The first basic case is
Case A: q #0

There are still two cases must be considered, the first one is

Case Al: pg <0

Then we can assume k> = —pgq, Eq. (27) can be rewritten as

w —kw—pr=0

and the general solution to Eq. (28) is

w = ag + a; sinh k¢ + a, cosh k¢

where ay = r/q, i.e.

w= 2 + a; sinh(\/=pg¢) + a, cosh(\/—pgq&)

Considering the relation in Eq. (26), here we select two special solutions from Eq. (30), the first one is

1,
w= g ty sinh(y/=pg¢)

then

fimpm et
W T r+ sinh(y=pgé)

21

(22)

(23)

(24)

(25)

(31)

(32)
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and

_ 1w 1y=pgcosh(y=pgé) (33)
& pw p r+sinh(,/=pg&)

From Egs. (32) and (33) one can derive the relation between f(&) and g(&) is (7) with 6 = 1.
The second one is

1
W= g + cosh(y/=pgd) (34)
then
1 q
——= 35
/2 w  r+ cosh(,/—pg&) (35)
and
= _ 1w 1 y=pgsinh(y=pg¢) (36)
pw  p r+cosh(y/=pgé)
From Egs. (35) and (36) one can derive the relation between f (&) and g(¢) is (7) with 6 = —1.
Case A2: pg > 0
Then we can assume k> = pq, Eq. (27) can be rewritten as
W+ kEw—pr=0 (37)
and the general solution to Eq. (37) is
w = ay + a; Sinké + a, cos ké (38)
where ay = r/q, i.e.
r . .
w= p + ay sin(y/pg&) + a; cos(/pg&) (39)
Considering the relation in Eq. (26), here we also select two special solutions from Eq. (39), the first one is
ro1 .
w="12 sin(y/pge) (40)
q 49
then
1 q
- . 41
/s w  r+sin(\/pgé) (41)
and
o LW 1 ypaeostypac) (42)
: pw p r+sin(y/pgé)
From Egs. (41) and (42) one can derive the relation between f (&) and g(¢) is (7) with 6 = —1.
The second one is
ro1
w = —+— cos(y/pgé) (43)
q 49
then
1 q
fimr 4

W+ cos(,/pgé)
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and

oo LW 1 ypasin(y/pg)
4 pw pr+cos(\/pgé)

From Egs. (44) and (45) one can derive the relation between f(¢) and g(¢) is (7) with 6 = —1.

The second basic case is

Case B. ¢ =10
Then Eq. (27) can be rewritten as
w —pr=0

its general solution is
"
w :%52 +aé+ag

where a; and ay are two arbitrary real constants.
From Eq. (47), one has

1 1
fime=mo
W ZE 4 aié+ap
and
2 1w 1 pré+a;
S= T T T =TT s .
pw  pZE+aié+a

4. Exact solutions to Gardner equation

(48)

(49)

Combining the results (32), (33), (35), (36), (41), (42), (44) and (45) with (8) and results from (14)—(22), we can obtain

many kinds of exact travelling wave solutiogs to Gardner equation (1), for example,
Type 1: For 6 = —1, if aff < 0 and 5+ #ﬁ < 0, then the solution to Gardner equation (1) is

_ _ oy Pt _e_r.
up =Ao+Big = 20 7 i tanh 25 8ocﬂg

Type 2: For 6 = —1, if «ff < 0 and 3T % > 0, then the solution to Gardner equation (1) is

27N a2 %

1 3(4ac + 72 c y2
u2=A0+Blg=f/qE (/)cot< 25 82(/36)

and

1 3(4ac + 72 c 2
u3:AO+Blg:_2_/ai —%tan( / >

Type 3: For 6 = —1, if aff < 0 and %‘ + 2*“—[; < 0, then the solution to Gardner equation (1) is

1 2c P2z
) flamc iy sinh (% 45)
M4=Ao+3|g=*2*/a:F ( i 7)

cosh(,/f%f%f) +1

Type 4: For 6 = —1, if aff < 0 and %‘ + 2’“—[; > 0, then the solution to Gardner equation (1) is

2c pad
, 3(4ac + 12 cos( 7+m§>
M5=A0+Blg=*L:F X r)

20 402 sin( /%Jr%ﬂcf):l:l

(51)

(52)

(53)

(54)
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and

. o2
\ ) s1n( E+’—§>
u(,:AO—i-B]g:—ZL:t _3(40(:?/) 20
o o cos ( 2 4 21/35)

Type 5: For 6 = —1, if 4oc + 7> > 0 and ¢ A Mﬁ > 0, then the solution to Gardner equation (1) is

_ __ 0 Placty?) LT
=Ay+Af = 20(? oy sech /3+4o¢ﬁ

Type 6: For 6 = —1, if 4ac + 7> > 0 and 5+ ﬁ < 0, then the solution to Gardner equation (1) is

_ _ 0, PBlac+y?) c_ 7
ug —A() +A1f = 20(:‘: 22 CSC ﬂ 40{ﬁé

and

_ _ Y 3(4ac +79%) c VZV
=Ay+ A f = 20(:l: % sec ﬁ 4{15

Type 7: For 6 = —1, if a(2c +7) > 0 and (#> — 1)(2c + 7)B < 0, then the solution to Gardner equation (1) is

)72 2 _ N 2.2(42
o = Ay + AL f = — 2 32cty)r? , (P =1D)Q2c+y) |67 (+2)

y
2o\ 202 42) © pB(r+2) %(2¢ +7) (=) 2e7)

cosh (\ /Wi> +r

with constraints » # 0 and #* # 1.

Type 8: For 6 = —1, if a(2¢ +7) > 0 and (#* — 1)(2¢c + y)B > 0, then the solution to Gardner equation (1) is

IS T ) Gl V[ ) B°p (2 +2)
A TA T Ty 20(r2 4 2) pp(r* +2) A2 +7) gin ( 20+’)f)
r2+2
and
dotdif =g [PtV (=D +ty) 6p°p*(r +2)
Uy — -
12 0 1. 20 20(r? +2) P2 +2) a(2c+y) cos ( %g) 47
re+

with constraints » # 0 and * # 1.
Type 9: For 6 = —1, if aff <0, 4ac + 9> > 0 and #* > 1, then the solution to Gardner equation (1) is

uy =Ao+A1f +Big

: 4ac+y?
B doc+ 72 3232 —1) 1 3(doc +y?) sinh ( - 2;1 5)
2o 2pop dac +97 cosh ( 472”;/,' 5) +7 42 oosh ( - 4“;;;%) +r

with a constraint 72 # 1.
Type 10: For 6 = —1, if aff < 0, 4oc +y*> < 0 and #? < 1, then the solution to Gardner equation (1) is

ug = Ao +A1f +Big

20 2p0(ﬁ 4oc + '))2 sin ( 49(24';;;}‘26) +r 402 sin ( 41c+, é)

4oc+y
y :t4occ +92 3722 — 1) 1  3(dec +97) cos ( 2;/; C)

307

(56)

(57)

(58)

(60)

(61)

(62)

(63)
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and

s = Ao +A1f +Big

. 4oc+y? ¢
L et 73R 1) 1 +4/— 3(4oc+y7) ST ( i g) (64)
2 - 2 "
2o 2pap 4ty cos ( 4“26;;;2&) +r 4ot cos ( 4“26;;;’2 f) +r

with a constraint 7> # 1.
Type 11: For § = 1, if ff < 0 and 4ac + y? > 0, then the solution to Gardner equation (1) is

_ _ Y 3(4ac + y?) 4oc + 92,
ue = Ao+ Bi1g = 2wtV ar coth TSuf ¢ (65)

Type 12: For § = 1, if 4ac + y> < 0 and o8 < 0, then the solution to Gardner equation (1) is

) 3(4ac + 92 4ac + 72
u17=A0+A1f=*2La:F\/* ( By ”Csch<\/ 40([3/5) (66)

Type 13: For 6 = 1, if a(2¢ + y)(r* — 2) > 0 and (+* — 2)(2c + 7)B < 0, then the solution to Gardner equation (1) is

) 3(2 2 (P +1)(2 65°p2(r2 -2
ug = Ao+ Af = =5+ 2( cj"’)zr X . Y ﬁpz(’ ) : (67)
o a(rr —2) pB(r* —2) 2(2¢+7)  ginh ( /(1+/fr(;>£i;)+w*)gv> +r
with constraints » # 0 and * # 2.
Type 14: For 6 = 1, if aff < 0 and 4ac + y? > 0, then the solution to Gardner equation (1) is
g =Ao+A1f +Big
2 2 cosh (/- #ile
vy doc + 9> [3pPA(r2+ 1) 1 - 3(dac +y?) 2p © (68)
2o 2ofp dac+77 Ginh ( - 4—“;;;’%) +r 42 inh ( - 4“2”;;"25) +r

Obviously, the solutions uy, u,, us, uy, ug, uy, uyg and u;; are usual solitary wave solutions and periodic solutions
expressed by sine—cosine functions, which can be found in the usual expansion methods, such as the function trans-
formation method [11,12], the hyperbolic function expansion method [13,14], the Jacobi elliptic function expansion
method [15,16] and the sine—cosine method [17], and some solutions are also given in references [1,2,4-7]. But the
solutions uy, us, ug, U1g, U11, U12, U13, U14, Uis, U1z and ujg can not be obtained in these expansion methods, these solutions
are new type solitary wave solutions or new type periodic solutions expressed by sine—cosine functions, some of them
have not been found before.

5. Conclusion

In this paper, we introduce a new transformation from the solutions to the projective Riccati equations and apply it
to solve Gardner equation. Many solutions are obtained for this Gardner equation, such as solitary wave solutions
constructed in terms of hyperbolic functions, periodic solutions expressed in terms of sine and cosine functions, some
solutions are not given in literatures to our knowledge. Of course, this transformation can be also applied to other
nonlinear wave equations.
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