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Abstract A transformation is introduced on the basis of the projective Riccati equations, and it is applied as an
intermediate in expansion method to solve nonlinear Schrödinger (NLS) equation and coupled NLS equations. Many
kinds of envelope travelling wave solutions including envelope solitary wave solution are obtained, in which some are
found for the first time.
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1 Introduction
A number of problems are described in terms of suit-

able nonlinear models, such as nonlinear Schrödinger
equations (NLS) in plasma physics,[1] KdV equation in
shallow water model,[2] and so on, in branches of physics,
mathematics, and other interdisciplinary sciences. It is an
interesting topic to seek exact solutions to these nonlin-
ear models. Here we will consider two nonlinear models,
i.e. NLS equation and coupled NLS equations. The NLS
equation reads

iut + αuxx + β|u|2u = 0 , (1)

and the coupled NLS equations read

iut + αuxx + (β1|u|2 + β2|v|2)u = 0 ,

ivt + αvxx + (β1|v|2 + β2|u|2)v = 0 . (2)

In Ref. [3], on the base of Lamé equation and Lamé
functions, we obtain the perturbed solutions to the NLS
equation and coupled NLS equations. In this paper, we
will reconsider these two nonlinear evolution systems. A
transformation is obtained from the well-known projec-
tive Riccati equations,[4−6] and then this transformation is
taken as an intermediate to solve these two systems, where
many kinds of envelope travelling wave solutions including
envelope solitary wave solutions are derived, among which
some are found for the first time.

2 Exact Solutions to NLS Equation
In order to solve Eq. (1), we take the following trans-

formation

u = φ(ξ) e i(kx−ωt) , ξ = x− cgt , (3)

where k is the wave number, ω is the angular frequency,
cg is the group velocity, and φ(ξ) is a real function.

Substituting Eq. (3) into Eq. (1) results in the follow-
ing ordinary differential equation,

α
d2φ

dξ2
+ i(2αk − cg)

dφ
dξ

+ (ω − αk2)φ+ βφ3 = 0 . (4)

Separating the real part and imaginary part yields

cg = 2αk , (5)

and if we suppose

ω − αk2 = −γ , (6)

then equation (4) is rewritten as

α
d2φ

dξ2
− γφ+ βφ3 = 0 . (7)

In order to solve Eq. (7), we introduce the following
crucial ansatz,

φ(ξ) =
n∑

i=1

f i−1(ξ)[Aif(ξ) +Big(ξ)] +A0 ,

A2
n +B2

n 6= 0 , (8)

where n can be determined by balancing the highest or-
der derivative term with the high degree nonlinear term
in Eq. (7). And f and g are solutions to the well-known
projective Riccati equations,[4−6]

f ′(ξ) = pf(ξ)g(ξ) ,

g′(ξ) = q + pg2(ξ)− rf(ξ) , (9)

where p 6= 0 is a real constant, and q and r are two real
constants. When p = −1 and q = 1, equations (9) re-
duce to the coupled equations given in Refs. [4] and [5],
and when p = ±1 and q ≥ 0, equations (9) reduce to the
coupled equations given in Ref. [6]. There is a relation
between f and g,

g2 = −1
p

[
q − 2rf +

r2 + δ

q
f2
]
, (10)

∗The project supported by National Natural Science Foundation of China under Grant Nos. 40045016 and 40175016
†Correspondence author, Email: fuzt@pku.edu.cn



190 FU Zun-Tao, LIU Shi-Da, and LIU Shi-Kuo Vol. 41

where δ = ±1.
Applying the above expansion method, if we take the

expansion order of φ as O(φ) = n and considering the
relations (9), then O(dφ/dξ) = n + 1, so partial balance
between the highest degree nonlinear term and the high-
est order derivative term leads to n = 1. Obviously, the

formal solution can be written as

φ = A0 +A1f(ξ) +B1g(ξ) , A2
1 +B2

1 6= 0 . (11)

Considering the relation (10), from Eq. (11) one can

have

φ3 =
(
A3

0 −
3q
p
A0B

2
1

)
+
(
3A2

0B1 −
q

p
B3

1

)
g +

(
3A2

0A1 −
3q
p
A1B

2
1 +

6r
p
A0B

2
1

)
f +

(
6A0A1B1 +

2r
p
B3

1

)
fg

+
[
3A0A

2
1 +

6r
p
A1B

2
1 −

3(r2 + δ)
pq

A0B
2
1

]
f2 +

[
3A2

1B1 −
(r2 + δ)
pq

B3
1

]
f2g +

[
A3

1 −
3(r2 + δ)

pq
A1B

2
1

]
f3 (12)

and
d2φ

dξ2
= −pqA1f + prB1fg + 3prA1f

2 − 2p(r2 + δ)
q

B1f
2g − 2p(r2 + δ)

q
A1f

3 . (13)

Substituting Eqs (11), (12), and (13) into Eq. (7) results in the following algebraic equations,

− γA0 + β
(
A3

0 −
3q
p
A0B

2
1

)
= 0 ,

− γA1 + β
(
−3q
p
A1B

2
1 +

6r
p
A0B

2
1 + 3A2

0A1

)
− αpqA1 = 0 ,

− γB1 + β
(
−q
p
B3

1 + 3A2
0B1

)
= 0 ,

β
(2r
p
B3

1 + 6A0A1B1

)
+ αprB1 = 0 ,

β
[6r
p
A1B

2
1 −

3(r2 + δ)
pq

A0B
2
1 + 3A0A

2
1

]
+ 3αprA1 = 0 ,

β
[
3A2

1B1 −
(r2 + δ)
pq

B3
1

]
− 2αp(r2 + δ)

q
B1 = 0 ,

β
[
A3

1 −
3(r2 + δ)

pq
A1B

2
1

]
− 2αp(r2 + δ)

q
A1 = 0 , (14)

for the arbitrariness of the argument ξ, from which the parameters can be determined. For example, for δ = −1, there
are the following solutions:
Case 1 If A1 = 0, A0 = 0, r = 0, then

B1 = ±

√
−2αp2

β
, pq =

γ

2α
. (15)

Obviously, there is the constraint αβ < 0.
Case 2 If A1 = 0, A0 = 0, r 6= 0, then

B1 = ±

√
−αp

2

2β
, pq =

2γ
α
, r = ±1 . (16)

Obviously, there is the constraint αβ < 0, too.
Case 3 If B1 = 0, A0 = 0, then

A1 = ±

√
2α2p2

βγ
, pq = −γ

α
, r = 0 . (17)

Case 4 If B1 = 0, A0 6= 0, then

A1 = ±

√
α2p2(r2 + 2)

βγ
, A0 = ±

√
γr2

β(r2 + 2)
, pq =

2(r2 − 1)γ
α(r2 + 2)

. (18)

There is the constraint r 6= 0 and r2 6= 1.



No. 2 New Exact Solutions to NLS Equation and Coupled NLS Equations 191

Case 5 If A0 = 0, A1 6= 0, B1 6= 0, then

A1 = ±

√
α2p2(r2 − 1)

4βγ
, B1 = ±

√
−αp

2

2β
, pq =

2γ
α

(19)

with the constraint r2 6= 1.
For δ = 1, there are the following solutions:

Case 1 If A1 = 0, A0 = 0, r = 0, then

B1 = ±

√
−2αp2

β
, pq =

γ

2α
. (20)

Obviously, there is the constraint that αβ < 0.
Case 2 If B1 = 0, A0 = 0, then

A1 = ±

√
−2α2p2

βγ
, pq = −γ

α
, r = 0 . (21)

Case 3 If B1 = 0, A0 6= 0, then

A1 = ±

√
α2p2(r2 − 2)

βγ
, A0 = ±

√
γr2

β(r2 − 2)
, pq =

2(r2 + 1)γ
α(r2 − 2)

. (22)

There is the constraint r 6= 0 and r2 6= 2.
Case 4 If A0 = 0, A1 6= 0, B1 6= 0, then

A1 = ±

√
α2p2(r2 + 1)

4βγ
, B1 = ±

√
−αp

2

2β
, pq =

2γ
α
. (23)

For the projective Riccati equations (9), when pq < 0 and δ = 1, its solution is

f1 =
q

r + sinh(
√
−pqξ)

, (24)

g1 = −
√
−pq
p

cosh(
√
−pq ξ)

r + sinh(
√
−pq ξ)

, (25)

and when pq < 0 and δ = −1, its solution is

f2 =
q

r + cosh(
√
−pq ξ)

, (26)

g2 = −
√
−pq
p

sinh(
√
−pq ξ)

r + cosh(
√
−pq ξ)

. (27)

When pq > 0 and δ = −1, its solutions are

f3 =
q

r + sin(
√
pq ξ)

, (28)

g3 = −
√
pq

p

cos(
√
pq ξ)

r + sin(
√
pq ξ)

, (29)

and

f4 =
q

r + cos(
√
pq ξ)

, (30)

g4 =
√
pq

p

sin(
√
pq ξ)

r + cos(
√
pq ξ)

. (31)

Combining Eqs. (3), (11), and the results from Eq. (15) ∼ (31), we can derive various envelope travelling solutions
including envelope solitary wave solutions to NLS equation (1), for example,
Type 1 For δ = −1, if αβ < 0 and αγ < 0, then the solution to NLS equation (1) is

u1 = B1g2 e i(kx−ωt) = ∓
√
γ

β
tanh

(√
− γ

2α
ξ

)
e i(kx−ωt) . (32)
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Type 2 For δ = −1, if αβ < 0 and αγ > 0, then the solution to NLS equation (1) is

u2 = B1g3 e i(kx−ωt) = ∓
√
−γ
β

cot
(√

γ

2α
ξ

)
e i(kx−ωt) , (33)

and

u3 = B1g4 e i(kx−ωt) = ±
√
−γ
β

tan
(√

γ

2α
ξ

)
e i(kx−ωt) . (34)

Type 3 For δ = −1, if αβ < 0 and αγ < 0, then the solution to NLS equation (1) is

u4 = B1g2 e i(kx−ωt) = ∓
√
γ

β

sinh(
√
−2γ/α ξ)

cosh(
√
−2γ/α ξ)± 1

e i(kx−ωt) . (35)

Type 4 For δ = −1, if αβ < 0 and αγ > 0, then the solution to NLS equation (1) is

u5 = B1g3 e i(kx−ωt) = ∓
√
−γ
β

cos(
√

2γ/α ξ)
sin(

√
2γ/α ξ)± 1

e i(kx−ωt) , (36)

and

u6 = B1g4 e i(kx−ωt) = ±
√
−γ
β

sin(
√

2γ/α ξ)
cos(

√
2γ/α ξ)± 1

e i(kx−ωt) . (37)

Type 5 For δ = −1, if βγ > 0 and αγ > 0, then the solution to NLS equation (1) is

u7 = A1f2 e i(kx−ωt) = ∓
√

2γ
β

sech

(√
γ

α
ξ

)
e i(kx−ωt) . (38)

Type 6 For δ = −1, if βγ > 0 and αγ < 0, then the solution to NLS equation (1) is

u8 = A1f3 e i(kx−ωt) = ±
√

2γ
β

csc
(√

−γ
α
ξ

)
e i(kx−ωt) , (39)

and

u9 = A1f4 e i(kx−ωt) = ±
√

2γ
β

sec
(√

−γ
α
ξ

)
e i(kx−ωt) . (40)

Type 7 For δ = −1, if βγ > 0 and (r2 − 1)αγ < 0, then the solution to NLS equation (1) is

u10 = (A0 +A1f2) e i(kx−ωt)

=
[
±

√
γr2

β(r2 + 2)
± 2(r2 − 1)γ
pα(r2 + 2)

√
α2p2(r2 + 2)

βγ

1
cosh(

√
2(1− r2)γ/α(r2 + 2) ξ) + r

]
e i(kx−ωt) (41)

with the constraint that r 6= 0 and r2 6= 1.
Type 8 For δ = −1, if βγ > 0 and (r2 − 1)αγ > 0, then the solution to NLS equation (1) is

u11 = (A0 +A1f3) e i(kx−ωt)

=
[
±

√
γr2

β(r2 + 2)
± 2(r2 − 1)γ
pα(r2 + 2)

√
α2p2(r2 + 2)

βγ

1
sin(

√
2(r2 − 1)γ/α(r2 + 2) ξ) + r

]
e i(kx−ωt) , (42)

and

u12 = (A0 +A1f4) e i(kx−ωt)

=
[
±

√
γr2

β(r2 + 2)
± 2(r2 − 1)γ
pα(r2 + 2)

√
α2p2(r2 + 2)

βγ

1
cos(

√
2(r2 − 1)γ/α(r2 + 2) ξ) + r

]
e i(kx−ωt) (43)

with the constraint that r 6= 0 and r2 6= 1.
Type 9 For δ = −1, if αβ < 0, αγ < 0, and r2 > 1, then the solution to NLS equation (1) is

u13 = (A1f2 +B1g2) e i(kx−ωt)

=
[
± 2γ
αp

√
α2p2(r2 − 1)

4βγ
1

cosh(
√
−2γ/α ξ) + r

∓
√
γ

β

sinh(
√
−2γ/α ξ)

cosh(
√
−2γ/α ξ) + r

]
e i(kx−ωt) (44)
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with the constraint r2 6= 1.
Type 10 For δ = −1, if αβ < 0, αγ > 0 and r2 < 1, then the solution to NLS equation (1) is

u14 = (A1f3 +B1g3) e i(kx−ωt) =
[
± 2γ
αp

√
α2p2(r2 − 1)

4βγ
1

sin(
√

2γ/α ξ) + r
∓
√
−γ
β

cos(
√

2γ/α ξ)
sin(

√
2γ/α ξ) + r

]
e i(kx−ωt) (45)

and

u15 = (A1f4 +B1g4) e i(kx−ωt) =
[
± 2γ
αp

√
α2p2(r2 − 1)

4βγ
1

cos(
√

2γ/α ξ) + r
±
√
−γ
β

sin(
√

2γ/α ξ)
cos(

√
2γ/α ξ) + r

]
e i(kx−ωt) (46)

with the constraint r2 6= 1.
Type 11 For δ = 1, if αβ < 0 and αγ < 0, then the solution to NLS equation (1) is

u16 = B1g1 e i(kx−ωt) = ∓
√
γ

β
coth

(√
− γ

2α
ξ

)
e i(kx−ωt) . (47)

Type 12 For δ = 1, if βγ < 0 and αγ > 0, then the solution to NLS equation (1) is

u17 = A1f1 e i(kx−ωt) = ∓
√
−2γ
β

csch
(√

γ

α
ξ

)
e i(kx−ωt) . (48)

Type 13 For δ = 1, if βγ(r2 − 2) > 0 and (r2 − 2)αγ < 0, then the solution to NLS equation (1) is

u18 = (A0 +A1f1) e i(kx−ωt)

=
[
±

√
γr2

β(r2 − 2)
± 2(r2 + 1)γ
pα(r2 − 2)

√
α2p2(r2 − 2)

βγ

1
sinh(

√
2(1 + r2)γ/α(2− r2) ξ) + r

]
e i(kx−ωt) (49)

with the constraint that r 6= 0 and r2 6= 2.
Type 14 For δ = 1, if αβ < 0 and αγ < 0, then the solution to NLS equation (1) is

u19 = (A1f1 +B1g1) e i(kx−ωt)

=
[
± 2γ
αp

√
α2p2(r2 + 1)

4βγ
1

sinh(
√
−2γ/αξ) + r

∓
√
γ

β

cosh(
√
−2γ/α ξ)

sinh(
√
−2γ/α ξ) + r

]
e i(kx−ωt) . (50)

Obviously, the solutions u1, u2, u3, u7, u8, u9, u16, and u17 are general envelope solitary wave solutions and
periodic solutions expressed by sine-cosine functions, which can be found in the usual expansion methods, such as
the function transformation method,[7,8] the hyperbolic function expansion method,[9,10] the Jacobi elliptic function
expansion method,[11,12] and the sine-cosine method.[13] But the solutions u4, u5, u6, u10, u11, u12, u13, u14, u15, u18,
and u19 cannot be obtained in these expansion methods. These solutions are new type envelope solitary wave solutions
or new type envelope periodic solutions expressed by sine-cosine functions, some of which have not been found before.

3 Exact Solutions to Coupled NLS Equation
In order to solve Eq. (2), we take the following transformation,

u = φ(ξ) e i(kx−ωt) , v = ψ(ξ) e i(kx−ωt) , ξ = x− cgt . (51)

If equations (5) and (6) are considered, then equation (2) can be rewritten as

α
d2φ

dξ2
− γφ+ (β1φ

3 + β2φψ
2) = 0 ,

α
d2ψ

dξ2
− γψ + (β1ψ

3 + β2φ
2ψ) = 0 . (52)

If φ = ψ is taken, then

α
d2φ

dξ2
− γφ+ (β1 + β2)φ3 = 0 (53)

can be obtained from Eqs. (52).
Comparing Eq. (53) with Eq. (7), one can see that the difference between these two equations is that β in Eq. (7)

is replaced by β1 + β2 in Eq. (53), so the solutions to Eq. (2) can be easily obtained from the solutions to Eq. (1), here
we omit these details.
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4 Conclusion
In this paper, we introduce an intermediate transformation from solutions to the projective Riccati equations and

apply it to solve the NLS equation and the coupled NLS equations. Many solutions are obtained for these nonlinear
systems, such as envelope solitary wave solutions constructed in terms of hyperbolic functions and envelope periodic
solutions expressed in terms of sine and cosine functions. Some of which are not given in literatures to our knowledge.
Of course, this transformation can be also applied to other nonlinear wave equations.
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