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Abstract

In this paper, the elliptic equation is taken as a transformation and applied to solve the Zakharov—Kuznetsov equa-
tion, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. It is shown that
more kinds of solutions are derived, such as periodic solutions of rational form, periodic solutions and so on.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Gottwald derived the nonlinear dispersive Zakharov—Kuznetsov equation from the quasigeostrophic barotropic vor-
ticity equation [1], where weakly nonlinear and long wave multiple scale analysis were applied to two dimensions and
derived the Zakharov—Kuznetsov (ZK for short) equation for nonlinear Rossby waves. In contrast to the Kadometsev—
Petviashvilli (KP for short) equation, the ZK equation is first derived in a geophysical fluid dynamics context. At the
same time, the ZK equation supports stable lump solitary waves [2], which makes the ZK equation a very attractive
model equation for the study of vortices in geophysical flows. Actually, there are more multiple structures in the ZK
equations, we will show next. All these studies may help to describe two-dimensional coherent structures such as atmos-
pheric blocking events, long lived eddies in the ocean or coherent structures in the Jovian atmosphere such as the Great
Red Spot.

We have taken elliptic equation as an intermediate transformation to solve nonlinear wave equations [3-5], and ob-
tained many periodic solutions and solitary wave solutions. However, there are still more research needed to do in order
to find more solutions of different forms. In the reference [6], we derived periodic solutions of rational forms, which are
due to external forcing. In this paper, the elliptic equation is taken as a transformation and applied to solve the ZK
equation to multiple structures of two-dimensional nonlinear Rossby waves.
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2. Multiple structures of two-dimensional nonlinear Rossby waves

ZK equation [1] reads
Uy + Ouy + oty + Pty + Pty =0 (1)

which was derived by Gottwald from the quasigeostrophic vorticity equation as a two-dimensional model for nonlinear
Rossby waves.
We seek its travelling wave solutions in the following frame

u=u(é), ¢(=lhkx+1ly—owt (2)

here w is angular frequency, k and / are wave number in x and y direction, respectively.
Substituting Eq. (2) into Eq. (1) and integrating once yield

k
(0 — k)u + %uz + (B + kPP = C (3)

where C is an integration constant. And then we suppose Eq. (3) has the following solution

Jj=n

u:u(z):z:b,-zj7 z=1z(&), b, #0 4)
Jj=0
where z satisfies the elliptic equation [7]
i=4
7 = Zaizi, a3 #0 (5)
=0
where 7/ = g—z, then
=Ygy %zz + 2a4z° (6)
2 2
Obviously, two special cases of (5) are
dz
—=b+7 7
K +z (7)
and
& — R(1 4 i) )
dé

which were introduced by Fan [8] and Yan et al. [9], respectively.
There n in the Eq. (4) can be determined by the partial balance between the highest order derivative terms and the
highest degree nonlinear term in the Eq. (3). Here we know that the degree of u is

Ou)=0(")=n 9)
and from (5) and (6), one has
o) =0@E") =4, 0FE)=0()=3 (10)

and actually one can have

O =d+1 (11)
So one has
Ow)=n, OW)=n+1, OW)=n+2 OW)=n+d (12)

For ZK equation (1), we have n = 2, so the ansatz solution of (4) can be rewritten as

u=>hby+bz+hbz, b #0 (13)
then

u? = by + 2bobiz + (2boby + b3)Z* + 2b1 bz’ + b3z (14)
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1 3
u// — (zalbl + 2a0b2) + (a2b1 + 36111)2)2 + (§a3b1 + 4a2b2)22 + (2041)1 + 5613[)2)23 + 6a4b224 (15)

Substituting Egs. ((13)—(15)) into Eq. (3) and collecting each order of z yield algebraic equations about coefficients
b(j=0,1,2) and a(i =0,1,2,3,4), i.e.

—(w — Sk)by + %kbg + (BE + yki?) Galbl + 2a0b2) -C=0 (16a)

—(w — 0k)by + akboby + (B + ykI*) (azby + 3arby) = 0 (16b)
) k 3

—(w — Sk)by + % (2boby 4 b?) + (BE* + ykl?) <§a3b1 + 4a2b2> =0 (16c)

akby by + (BE + yki*) (2asby + Sasb,) =0 (16d)

ak 5 3 2

5 b+ 6(BK" + 9kI*)asbr = 0 (16e)

from which we have

12(BK 4+ 9P) . (6B + 1) .

b, = 4, by = 3,
% R ot ) o (17)
o — 0k 4K +yI%) 3(BI* 4+ y1)a3
by = - a + -
ok o doay

at the same time there is

2
=B B
a@= 204 (612 4a4> (18)

So if a3 =0, then

12(pk2 + 91%) w— 0k AP+ yI%)
—— ", b= -

bi=ai=0, b= o ok o

a (19)

and the transformation (5) takes the following form

2 = ay + a222 + 61424 (20)

Z/
which has many kinds of solutions, next we will show some solutions of rational forms expressed in terms of different
elliptic functions [7].

() If ag = (1—mHl4, ar = (1 + m»I2 and a, = (1—m>)/4(where 0 < m < 1, is called modulus of Jacobi elliptic func-
tions, see [7,10-12]), then the solutions to Eq. (20) are
cn(é,m)

_ 21

1T sn(¢&, m) 1)

where sn(&,m) and cn(&,m) are Jacobi elliptic sine and cosine function, respectively,(see [7,10-12]) and
cn(é,m)

_ 22

: 1 - Sn(é) m) ( )

These are two new solutions to Eq. (20) which are not shown in references [3-5]. So based on the above results, we can
derive new solutions to Eq. (1)

o =0k 2Bk +y1) 3(BK 49 (1 — m?)en® (&, m)

= 22 = 1 2 2
uy =bo+ b, A " (I +m) 21 + sn(Z,m)] (23)
and
o=k 2R P) | o (K 9P - ment(Em)
U =bo+ b7 = ak o (L4m) = [l —sn(& m)) @)
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Q) If ag = —(1—m>l4, a, = (1 + m*)/2 and as = —(1—m?)/4, then the solutions to Eq. (20) are
dn(¢, m)

_ 25
27T msn(&, m) (25)
and
dn(¢, m)
_ 26
- msn(&, m) (26)
where dn(&,m) is Jacobi elliptic function of the third kind (see [7,10-12]) and new solutions to Eq. (1) are
B 2BKE 4 ]2 2 021 — m2)dn2(&
ok o o[l + msn(&, m)]
and
_ 5k 2BKE L2 21 — m2)dn2(&
o= byt =@k B (o SR (L ) m) o8)
ok o o[l —msn(&, m)]
(3) If ag = m*4, a = —(2—m?)/2 and a4 = m?/4, then the solutions to Eq. (20) are
msn(¢&, m)
_ S 29
S T 11 dn(E,m) (29)
and
msn (&, m)
_ 30
=1 " dn(E,m) (30)
and new solutions to Eq. (1) are
— 0k 2(BK* + I 3(BI* + pl*)msn?(&
us = by 4 by = D=0k 2B ) 5 oy K Hl)mCsnc(c,m) (31)
ak o a[1 4+ dn(¢&,m)]
and
_ 2, .2 2 2\ phen2( £
u6:b0+b222:w 6k+2(ﬁk +/l)(2_m2)_3(ﬁk + pI7)ym*sn* (&, m) (32)

ok o o[l —dn(&,m)]
It is known that when m — 1, sn(é,m) — tanh¢, cn(&,m) — seché, dn(&,m) — seché, so new solutions to Eq. (1) are
= ok 2K +yP) (K + P )tanh’(¢)

;= by + brZ? = 33
Us 0 2Z ok ” oz[l n sech(i)]z ( )
and
- 2BIE + 12 02 hi(¢
wg = by + byt = k+ (BZ + ) 3(BK + 1 )tarvl 2(g) (34)
ak o [l — sech(&)]
@) If ag = 1/4, a» = (1-2m?)/2 and a4 = 1/4, then the solutions to Eq. (20) are
sn(&, m)
_ 35
77T en(&,m) (35)
and
sn(&, m)
_ 36
$T1- cn(&, m) (36)
and new solutions to Eq. (1) are
_ 24 72 2 2 2/
wr = by + byt = 2k HPE I gy 3K AgD)sr(c m) (37)
ok o [l 4+ en (&, m)]
and
_ B2 4+ ]2 2 2\ en?
iy = by + o — =0k 2Pk +yl )(1 _ow) — 3(pk” + pI7)sn (éém) (38)
ok 7 [l — en(Em)]

Similarly, when m — 1, the solutions #; and ug reduce to solutions us and ug.
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(5) If ap = 1/4, a = —(2—m?)/2 and a, = m*/4, then the solutions to Eq. (20) are
sn(&, m)

# T T+ dn(Em) (39)
and
__sn(¢m)
0= T dn (g, m) (40)
and new solutions to Eq. (1) are
_ 2 2 2 2N Ao 2(x
Uy = by + byt = & 5k+2(ﬁk +70%) (2 3(Bk? + y1%)msn (2g,m) an
ok f% o[l + dn(&, m)]
and
_ 35 2 2 2 2N, 4.2
u10:b0+b222:w 0k+2(/3k +l )(2—m2)_3(ﬁk +! )m s (ém) (42)

ok o [l — dn(&,m)]*
which are the same as (31) and (32) respectively.

Remark 1. The above ten solutions to Eq. (20) i.e. z1, 2o, 23, z4, Zs, Z6, 27, Z3, Z9 and zjg, are first applied to present the
exact solutions to the nonlinear wave equations. The above twelve solutions to Eq. (1) are first reported here to our
knowledge.

Apart from the above rational form solutions expressed in terms of different elliptic functions [7], there are many
more kinds of solutions expressed in terms of different elliptic functions [7] directly, for there are more other kinds of
solutions to Eq. (20). For example,

(A1) If aqp=1, a= —(1 + m?) and a4 = m*(where 0 < m < 1, is called modulus of Jacobi elliptic functions, see
[10,7,11,12]), then the solution is

zZ1 = sn(é,m) (43)
and
o —k AP+ )1 +m?)  12(BE + 9P )mPsn? (€,
= by b = OOk ML) 1B+ i) a4
(12) If ag = m*—1, a, = 2m*—1 and a, = —m?, then the solution is
Zi = Cn(é’") (45)
and
w—0k 4(PKE+9P)(1 —2m?)  12(BK* + yI*)men®(&, m
(13) If ay = 1—m?, a, = 2—m? and a4 = —1, then the solution is
Z13 = dn(i,m) (47)
and
o — ok AP +91P) (2 —m?)  12(BK* + yI*)dn’ (€,
U :b(] +b222 — ak _ ([ ya)( m )+ (ﬁ /OC) (é m) (48)
(14) If ag = m*, a» = —(1 + m?) and a4 = 1, then the solution is
1
= £ = 4
z14 = ns(&, m) (e ) (49)
and
— ok A(BEE+ (1 +m?)  12(pk* + y/*)ns?
ot ot = @Ok A £ 9P) (1) 12 4y P)ns(Em) 50)

ok o o
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(15) If g = —m?, a» = 2m*—1 and a4 = 1—m?, then the solution is
_r
cn(é,m)

z1s = nc(é,m) =
and

Uis = b() +b222 =

w — 0k N 4(BK* +9P)(1 = 2m*)  12(BK* + ) (1 — m*)nc* (&, m)

ok o o
(16) If ay = —1, a» = 2—m* and a4 = m*—1, then the solution is
1
=nd =
0 =06 = Gatem)

and

ug = by + by =

w =0k 4B +9I)(2—m?)  12(BK* +yI*)(m* — )nd* (¢, m)

ok o o

AN Ifag=1, ar = 2—m” and a4 = 1—m?, then the solution is

_ _ sn(¢,m)
Z17 = SC(f,m) = Cn(fym)
and
5 2 "2 a2 2 2 2 2
= by + o7 o ok APk + 1) (2 —m?)  12(Bk” +yI7)(1 — m?)sc? (&, m)
ok o o
(18) If ap =1, a, = 2m*—1 and a4 = (m°—1)m>, then the solution is
_ _sn(m)
Z1g = Sd(f,m) = dn(@m)
and
— 2 4 52 92 2 2\ 212/ ¢
i = by + by = 0] 5k+4(ﬁk +9F)(1 — 2m?) B 12(pk” + yI7)(m* — 1)m?*sd” (&, m)

ok o o

(19) If ap = 1—m?, a, = 2—m* and a4 = 1, then the solution is

_ _on(ém)
Z19 = CS(C,W!) = sn(f7m)
and
_ 2 2Ny 2 2 2\ 2
Uiy = by + byt = Ok 4(BK> +9I)(2 —m*)  12(BK> + pl*)es* (&, m)
ok o o
(20) If ap =1, a» = —(1 + m?) and a4 = m?, then the solution is
B _ cn(é, m)
z0 = cd(&,m) = dan(é, m)
and
— w2 2 2 2y, 212
oo = by 4 ot = & 5k+4(ﬁk2+ V) (1 +m?)  12(BK + 917 )mPed? (¢, m)

ok o o

(1) If ag = m*(m*—1), ar = 2m*—1 and a4 = 1, then the solution is

B _dn(&,m)
21 = ds(&m) = sn(&, m)
and
_ 22\ 2 2 2\ 42k
tot = by by — ) 5k+4(ﬁk +0)(A =2m?)  12(Bk” + yI)ds™ (&, m)

ok o o

(51)

(52)

(53)

(54)

(55)

(60)

(61)

(62)

(63)
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(22) If ay = m?, a» = —(1 + m?) and a4 = 1, then the solution is
B __dn(&,m)
Zy = dc(ﬁ,m) = Cn(é7 m) (65)
and
o — ok N 4(BIE +9P) (L +m?)  12(BIE 4 yP)dc (&, m)

Uy = by + byt =
ok o o

(66)

It is known that when m — 1, sn(é,m)— tanhé, cn(&,m)— seché, dn(é,m) — seché and when m — 0,
sn(&,m) — sing, cn(é,m) — cosé. And among the Jacobi elliptic functions, Jacobi elliptic sine function, Jacobi elliptic
cosine function and Jacobi elliptic function of the third kind are three basic ones, all other Jacobi elliptic functions can
be expressed in terms of them. So we also can get more solutions expressed in terms of hyperbolic functions and trig-
onometric functions.

Remark 2. Some of the solutions given above are singular. Actually, These solutions are a kind of solutions dealing
with “hot spots” or “blow-up” of solutions [13-16], which can develop singularity at a finite point.

3. Conclusion

In this paper, we consider elliptic equation as a transformation to solve ZK equations, and multiple structures of
nonlinear Rossby waves are derived, including periodic solutions of rational forms, solitary wave solutions constructed
in terms of hyperbolic functions of rational forms. And application of transformation (5) to nonlinear wave equations,
some of the obtained solutions have not been obtained by the sine-cosine method [17], the homogeneous balance method
[18], the hyperbolic function expansion method [8,19], the Jacobi elliptic function expansion method [20,21], the nonlin-
ear transformation method [22-24], the trial function method [25,26] and so on. So there still exists the require for further
studies of nonlinear model.
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