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Exact Jacobian Elliptic Function Solutions to sine-Gordon Equation∗
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Abstract In this paper, four transformations are introduced to solve single sine-Gordon equation by using the
knowledge of elliptic equation and Jacobian elliptic functions. It is shown that different transformations are required in
order to obtain more kinds of solutions to the single sine-Gordon equation.
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1 Introduction
The sine-Gordon-type equations, including single sine-

Gordon (SSG for short) equation

uxt = α sinu , (1)

double sine-Gordon (DSG for short) equation

uxt = α sinu + β sin(2u) , (2)

and triple sine-Gordon (TSG for short) equation

uxt = α sinu + β sin(2u) + γ sin(3u) (3)

are widely applied in physics and engineering. For exam-
ple, DSG equation is a frequent object of study in numer-
ous physical applications, such as Josephson arrays, ferro-
magnetic materials, charge density waves, smectic liquid
crystal dynamics.[1−5] Actually, SSG equation and DSG
equation also arise in nonlinear optics 3He spin waves and
other fields. In a resonant fivefold degenerate medium, the
propagation and creation of ultra-short optical pulses, the
SSG and DSG models are usually used. However, in some
cases, one has to consider other sine-Gordon equations.
For instance, TSG equation is used to describe the prop-
agation of strictly resonant sharp line optical pulses.[6]

Due to the wide applications of sine-Gordon type
equations, many solutions to them, such as tan−1coth ξ,
tan−1tanh ξ, tan−1sech ξ, tan−1sn ξ and so on, have
been obtained in different functional forms by differ-
ent methods.[7−12] Due to the special forms of the sine-
Gordon-type equations, it is very difficult to solve them
directly, so it needs some transformations. In this paper,
based on the introduced transformations, we will show
systematical results about solutions for SSG equation (1)
by using the knowledge of elliptic equation and Jacobian
elliptic functions.[13−19]

2 The First Kind of Transformation and So-
lutions to SSG Equation
In order to solve the sine-Gordon-type equations, cer-

tain transformations must be introduced. For example,
the transformation

u = 2 tan−1v or v = tan
u

2
, (4)

has been introduced in Refs. [7] and [9] to solve DSG equa-
tion.

When the transformation (4) is considered, the SSG
equation (1) can be rewritten as

(1 + v2)vtx − 2vvtvx − αv − αv3 = 0 . (5)

Equation (5) can be solved in the frame

v = v(ξ), ξ = k(x− ct) , (6)

where k and c are wave number and wave speed, respec-
tively.

Substituting Eq. (6) into Eq. (5), we have

(1 + v2)
d2v

dξ2
− 2v

( dv

dξ

)2

+ α1v + α1v
3 = 0 ,

α1 =
α

k2c
. (7)

And then we suppose that equation (7) has the follow-
ing solution:

v = v(y) =
j=n∑
j=0

bjy
j , bn 6= 0, y = y(ξ) , (8)

where y satisfies elliptic equation,[13−20]

y′2 = a0 + a2y
2 + a4y

4, a4 6= 0 (9)

with y′ = dy/dξ, then

y′′ = a2y + 2a4y
3 . (10)
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There n in Eq. (8) can be determined by the partial bal-
ance between the highest order derivative terms and the
highest degree nonlinear term in Eq. (7). Here we know
that the degree of v is

O(v) = O(yn) = n , (11)

and from Eqs. (9) and (10), one has

O(y′2) = O(y4) = 4, O(y′′) = O(y3) = 3 , (12)

and actually one can have

O(y(l)) = l + 1 . (13)

So one has

O(v) = n, O(v′) = n + 1 ,

O(v′′) = n + 2, O(v(l)) = n + l . (14)

For SSG equation (1), we have n = 1, so the ansatz solu-
tion of Eq. (7) can be rewritten as

v = b0 + b1y, b1 6= 0 . (15)

Substituting Eq. (15) into Eq. (7) results in an algebraic
equation for y, which can be used to determine expansion
coefficients in Eq. (15) and some constraints can also be
obtained. Here we have

b0 = 0, b2
1 =

a2 + α1

2a0
=

2a4

a2 − α1
, (16)

from which the constraints can be determined as
a2 + α1

2a0
> 0,

2a4

a2 − α1
> 0, a2

2 > 4a0a4 . (17)

Considering the constraints (17), the solutions to the el-
liptic equation (9) can be used to derive the final results,
here eleven cases can be obtained.

Case 1 If a0 = 0, a2 = 1, a4 = 1, then

y = csch ξ, b0 = 0, b1 = ±1, c = − α

k2
, (18)

where k is an arbitrary constant. So the solution to SSG
Eq. (1) is

u1 = 2 tan−1(±csch ξ) . (19)

Case 2 If a0 = 1 −m2, a2 = 2m2 − 1, a4 = −m2,
where 0 ≤ m ≤ 1 is called modulus of Jacobian elliptic
functions,[20−23] then

y = cn ξ, b0 = 0, b1 = ±
√

m2

1−m2
,

c =
α

k2
, 0 < m < 1 , (20)

where k is an arbitrary constant, and cn ξ is Jacobian el-
liptic cosine function.[20−23] So the solution to SSG Eq. (1)
is

u2 = 2 tan−1

(
±
√

m2

1−m2
cn ξ

)
. (21)

Case 3 If a0 = −m2, a2 = 2m2 − 1, a4 = 1 −m2,
then

y = nc ξ ≡ 1
cn ξ

, b0 = 0, b1 = ±
√

1−m2

m2
,

c = − α

k2
, 0 < m < 1 , (22)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u3 = 2 tan−1

(
±
√

1−m2

m2
nc ξ

)
. (23)

Case 4 If a0 = 1, a2 = 2m2 − 1, a4 = (m2 − 1)m2,
then

y = sd ξ ≡ sn ξ

dn ξ
, b0 = 0, b1 = ±m

c =
α

k2
, 0 < m < 1 , (24)

where k is an arbitrary constant, and sn ξ is Jacobian el-
liptic sine function and dn ξ is Jacobian elliptic function
of the third kind.[20−23] So the solution to SSG Eq. (1) is

u4 = 2 tan−1(±m sd ξ) . (25)

Case 5 If a0 = 1−m2, a2 = 2−m2, a4 = 1, then

y = cs ξ ≡ cn ξ

sn ξ
, b0 = 0, b1 = ±

√
1

1−m2
,

c =
α

m2k2
, 0 < m < 1 , (26)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u5 = 2 tan−1

(
±
√

1
1−m2

cs ξ

)
. (27)

Case 6 If a0 = 1−m2, a2 = 2−m2, a4 = 1, then

y = cs ξ ≡ cn ξ

sn ξ
, b0 = 0, b1 = ±1 ,

c = − α

m2k2
, 0 < m < 1 , (28)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u6 = 2 tan−1(± cs ξ) . (29)

Case 7 If a0 = m2(m2 − 1), a2 = 2m2 − 1, a4 = 1,
then

y = ds ξ ≡ dn ξ

sn ξ
, b0 = 0, b1 = ± 1

m
,

c = − α

k2
, 0 < m ≤ 1 , (30)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u7 = 2 tan−1
(
± 1

m
ds ξ

)
. (31)

Actually, when m→ 1, u7 recovers u1.
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Case 8 If a0 = 1, a2 = 2−m2, a4 = 1−m2, then

y = sc ξ ≡ sn ξ

cn ξ
, b0 = 0, b1 = ±

√
1−m2 ,

c = − α

m2k2
, 0 < m < 1 , (32)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u8 = 2 tan−1
(
±
√

1−m2 sc ξ
)

. (33)

Case 9 If a0 = 1, a2 = 2−m2, a4 = 1−m2, then

y = sc ξ ≡ sn ξ

cn ξ
, b0 = 0, b1 = ±1 ,

c =
α

m2k2
, 0 < m < 1 , (34)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u9 = 2 tan−1(± sc ξ) . (35)

Case 10 If a0 = (1−m2)/4, a2 = (1 + m2)/2,
a4 = (1−m2)/4, then

y =
cn ξ

1± sn ξ
, b0 = 0, b1 = ±

√
1−m2

(1−m)2
,

c =
α

mk2
, 0 < m < 1 , (36)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u10 = 2 tan−1

(
±

√
1−m2

(1−m)2
cn ξ

1± sn ξ

)
. (37)

Case 11 If a0 = (1−m2)/4, a2 = (1 + m2)/2,
a4 = (1−m2)/4, then

y =
cn ξ

1± sn ξ
, b0 = 0, b1 = ±

√
1−m2

(1 + m)2
,

c = − α

mk2
, 0 < m < 1 , (38)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u11 = 2 tan−1

(
±

√
1−m2

(1 + m)2
cn ξ

1± sn ξ

)
. (39)

Remark 1 The solutions u10 and u11 in terms of ra-
tional functions have not been reported in the literature,
they are new solutions to SSG Eq. (1).

Remark 2 The solutions from u2 to u11 in terms of Ja-
cobian elliptic functions have not been given in Ref. [11].

Remark 3 In Ref. [10], Peng solved DSG equation in
form of

uxt = sinu + λ sin(2u) , (40)

and obtained some solutions in terms of Jacobian elliptic
functions. He pointed out that he can obtain solutions
to SSG Eq. (1) with α = 1 when λ = 0. However, his
conclusion is wrong, for the coefficients of solutions he ob-
tained in terms of sn (Eq. (40) in Ref. [10], dn (Eq. (46)
in Ref. [10], ns (Eq. (51) in Ref. [10]) and dc (Eq. (52) in
Ref. [10]) are imaginary, but in fact they should be real.
For example, from the constraint (41) in Ref. [10]

(1−m2)2k2ω2 − 4λ(1 + m2)kω + 4λ2 − 1 = 0 , (41)

if λ = 0, then we have

kω = ± 1
1−m2

. (42)

Substituting Eq. (42) into solution (40) in Ref. [10],

u = 2arctan

(
±
√
−(1 + m2)kω + 2λ + 1

2kω

× sn (kx− ωt)

)
, (43)

we can derive the coefficient
√

[−(1 + m2)kω + 1]/2kω to
be i m or i, with i ≡

√
−1.

So solutions given by Peng in terms of sn (Eq. (40)
in Ref. [10]), dn (Eq. (46) in Ref. [10]), ns (Eq. (51) in
Ref. [10]) and dc (Eq. (52) in Ref. [10]) are not real solu-
tions, which is contrary to the origin of SSG Eq. (1).

Remark 4 Based on the above results, we can see that
when the auxiliary equation, such as elliptic equation (9),
is applied to solve nonlinear evolution equations, the con-
straints must be involved, otherwise, the obtained solu-
tions may be trivial.

3 The Second Kind of Transformation and
Solutions to SSG Equation
The second transformation under consideration is

u = 2 tan−1
(1

v

)
or

1
v

= tan
u

2
, (44)

which has been introduced in Ref. [7] to solve DSG equa-
tion.

When the transformation (44) is considered, the SSG
Eq. (1) can be rewritten as

(1 + v2)vtx − 2vvtvx + αv + αv3 = 0 . (45)

We can see that the difference between Eq. (5) and
Eq. (45) is that the −α in Eq. (5) is replaced by α in
Eq. (45), so the solutions to Eq. (1) under the transfor-
mation (44) can be easily obtained by replacing α by −α

and v by 1/v in solutions from u1 to u11.
Case 1 If a0 = 0, a2 = 1, a4 = 1, then the solution

to SSG Eq. (1) is

u12 = 2 tan−1(±sinh ξ) . (46)
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Case 2 If a0 = 1 −m2, a2 = 2m2 − 1, a4 = −m2,
then the solution to SSG Eq. (1) is u3.

Case 3 If a0 = −m2, a2 = 2m2 − 1, a4 = 1 −m2,
then the solution to SSG Eq. (1) is u2.

Case 4 If a0 = 1, a2 = 2m2 − 1, a4 = (m2 − 1)m2,
then the solution to SSG Eq. (1) is u7.

Case 5 If a0 = 1 −m2, a2 = 2 −m2, a4 = 1, then
the solution to SSG Eq. (1) is u8.

Case 6 If a0 = m2(m2 − 1), a2 = 2m2 − 1, a4 = 1,
then the solution to SSG Eq. (1) is u4.

Case 7 If a0 = 1 −m2, a2 = 2 −m2, a4 = 1, then
the solution to SSG Eq. (1) is u9.

Case 8 If a0 = 1, a2 = 2 −m2, a4 = 1 −m2, then
the solution to SSG Eq. (1) is u5.

Case 9 If a0 = 1, a2 = 2 −m2, a4 = 1 −m2, then
the solution to SSG Eq. (1) is u6.

Case 10 If a0 = (1−m2)/4, a2 = (1 + m2)/2,
a4 = (1−m2)/4, then the solution to SSG Eq. (1) is

u13 = 2 tan−1

(
±
√

(1−m)2

1−m2

1± sn ξ

cn ξ

)
. (47)

Case 11 If a0 = (1−m2)/4, a2 = (1 + m2)/2, a4 =
(1−m2)/4, then the solution to SSG Eq. (1) is

u14 = 2 tan−1

(
±
√

(1 + m)2

1−m2

1± sn ξ

cn ξ

)
. (48)

Remark Most of the solutions from u12 to u14 in terms
of Jacobian elliptic functions have not been given in the
literature.

4 The Third Kind of Transformation and So-
lutions to SSG Equation
The third transformation is introduced in the form

u = 2 sin−1 v or v = sin
u

2
, (49)

and then the SSG equation (1) can be rewritten as

(1− v2)vtx + vvtvx − αv(1− v2)2 = 0 . (50)

In the travelling wave frame (6), the formal solution
of Eq. (50) by the elliptic equation expansion method (8)
can be written as Eq. (15). Substituting Eq. (15) into
Eq. (50), we have

b0 = 0, b1 = ±
√

a4k2c

α
,

α

k2c
=
−a2 ±

√
a2
2 − 4a0a4

2
(51)

with constraints

a4k
2c

α
> 0, a2

2 − 4a0a4 ≥ 0 . (52)

Similarly, there are some cases to consider. For exam-
ple,

Case 1 If a0 = 1, a2 = −(1 + m2), a4 = m2, then

y = sn ξ, b0 = 0, b1 = ±m ,

c =
α

k2
, 0 < m ≤ 1 , (53)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u15 = 2 sin−1(±m sn ξ) . (54)

Case 2 If a0 = 1, a2 = −(1 + m2), a4 = m2, then

y = sn ξ, b0 = 0, b1 = ±1 ,

c =
α

k2m2
, 0 < m ≤ 1 , (55)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u16 = 2 sin−1(± sn ξ) . (56)

Actually, when m→ 1, u15 and u16 all recover,

u17 = 2 sin−1(± tanh ξ), c =
α

k2
. (57)

Case 3 If a0 = 1 −m2, a2 = 2m2 − 1, a4 = −m2,
then

y = cn ξ, b0 = 0, b1 = ±1 ,

c = − α

k2m2
, 0 < m ≤ 1 , (58)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u18 = 2 sin−1(± cn ξ) . (59)

Actually, when m→ 1, u18 recovers

u19 = 2 sin−1(± sech ξ), c = − α

k2
. (60)

Case 4 If a0 = m2 − 1, a2 = 2−m2, a4 = −1, then

y = dn ξ, b0 = 0, b1 = ±1 ,

c = − α

k2
, 0 < m ≤ 1 , (61)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u20 = 2 sin−1(±dn ξ) . (62)

Actually, when m→ 1, u20 recovers u19.
Case 5 If a0 = m2 − 1, a2 = 2−m2, a4 = −1, then

y = dn ξ, b0 = 0, b1 = ± 1√
1−m2

,

c =
α

(m2 − 1)k2
, 0 < m < 1 , (63)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u21 = 2 sin−1

(
± 1√

1−m2
dn ξ

)
. (64)
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Case 6 If a0 = m2, a2 = −(1 + m2), a4 = 1, then

y = ns ξ, b0 = 0, b1 = ± 1
m

,

c =
α

k2m2
, 0 < m ≤ 1 , (65)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u22 = 2 sin−1
(
± 1

m
ns ξ

)
. (66)

Case 7 If a0 = m2, a2 = −(1 + m2), a4 = 1, then

y = ns ξ, b0 = 0, b1 = ±1 ,

c =
α

k2
, 0 < m ≤ 1 , (67)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u23 = 2 sin−1(±ns ξ) . (68)

Actually, when m→ 1, u22 and u23 all recover,

u24 = 2 sin−1(± coth ξ), c =
α

k2
. (69)

Case 8 If a0 = −m2, a2 = 2m2 − 1, a4 = 1 −m2,
then

y = nc ξ, b0 = 0, b1 = ±1 ,

c =
α

(1−m2)k2
, 0 < m < 1 , (70)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u25 = 2 sin−1(±nc ξ) . (71)

Case 9 If a0 = −1, a2 = 2−m2, a4 = m2 − 1, then

y = nd ξ, b0 = 0, b1 = ±1 ,

c =
α

(m2 − 1)k2
, 0 < m < 1 , (72)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u26 = 2 sin−1(±nd ξ) . (73)

Case 10 If a0 = −1, a2 = 2−m2, a4 = m2−1, then

y = nd ξ, b0 = 0, b1 = ±
√

1−m2 ,

c = − α

k2
, 0 < m < 1 , (74)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u27 = 2 sin−1(±
√

1−m2nd ξ) . (75)

Case 11 If a0 = 1, a2 = 2m2 − 1, a4 = (m2 − 1)m2,
then

y = sd ξ, b0 = 0, b1 = ±
√

1−m2 ,

c = − α

m2k2
, 0 < m < 1 , (76)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u28 = 2 sin−1(±
√

1−m2sd ξ) . (77)

Case 12 If a0 = 1, a2 = −(1 + m2), a4 = m2, then

y = cd ξ, b0 = 0, b1 = ±m ,

c =
α

k2
, 0 < m ≤ 1 , (78)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u29 = 2 sin−1(±m cd ξ) . (79)

Case 13 If a0 = 1, a2 = −(1 + m2), a4 = m2, then

y = cd ξ, b0 = 0, b1 = ±1 ,

c =
α

m2k2
, 0 < m ≤ 1 , (80)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u30 = 2 sin−1(± cd ξ) . (81)

Case 14 If a0 = m2(m2 − 1), a2 = 2m2 − 1, a4 = 1,
then

y = ds ξ, b0 = 0, b1 = ± 1√
1−m2

,

c =
α

(1−m2)k2
, 0 < m < 1 , (82)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u31 = 2 sin−1

(
± 1√

1−m2
ds ξ

)
. (83)

Case 15 If a0 = m2, a2 = −(1 + m2), a4 = 1, then

y = dc ξ, b0 = 0, b1 = ± 1
m

,

c =
α

m2k2
, 0 < m ≤ 1 , (84)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u32 = 2 sin−1
(
± 1

m
dc ξ

)
. (85)

Case 16 If a0 = m2, a2 = −(1 + m2), a4 = 1, then

y = dc ξ, b0 = 0, b1 = ±1 ,

c =
α

k2
, 0 < m ≤ 1 , (86)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u33 = 2 sin−1(±dc ξ) . (87)

Apart from these Jacobian elliptic solutions, y also has
some rational solutions in terms of Jacobian elliptic func-
tions. For example,



28 FU Zun-Tao, YAO Zhen-Hua, LIU Shi-Kuo, and LIU Shi-Da Vol. 44

Case 17 If a0 = −(1−m2)/4, a2 = (1 + m2)/2,
a4 = −(1−m2)/4, then

y =
dn ξ

1±m sn ξ
, b0 = 0, b1 = ±

√
1−m2

1 + m
,

c = − 4α

(1 + m)2k2
, 0 < m < 1 , (88)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u34 = 2 sin−1

(
±
√

1−m2

1 + m

dn ξ

1±m sn ξ

)
. (89)

Case 18 If a0 = −(1−m2)/4, a2 = (1 + m2)/2,
a4 = −(1−m2)/4, then

y =
dn ξ

1±m sn ξ
, b0 = 0, b1 = ±

√
1−m2

1−m
,

c = − 4α

(1−m)2k2
, 0 < m < 1 , (90)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u35 = 2 sin−1

(
±
√

1−m2

1−m

dn ξ

1±m sn ξ

)
. (91)

Case 19 If a0 = m2/4, a2 = −(2−m2)/2, a4 =
m2/4, then

y =
m sn ξ

1± dn ξ
, b0 = 0, b1 = ± m√

2−m2 + 2
√

1−m2
,

c =
4α

(
√

2−m2 + 2
√

1−m2)k2
, 0 < m ≤ 1 , (92)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u36 = 2 sin−1

(
± m√

2−m2 + 2
√

1−m2

m sn ξ

1± dn ξ

)
. (93)

Case 20 If a0 = m2/4, a2 = −(2−m2)/2, a4 =
m2/4, then

y =
m sn ξ

1± dn ξ
, b0 = 0, b1 = ± m√

2−m2 − 2
√

1−m2
,

c =
4α

(
√

2−m2 − 2
√

1−m2)k2
, 0 < m ≤ 1 , (94)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u37 = 2 sin−1

(
± m√

2−m2 − 2
√

1−m2

m sn ξ

1± dn ξ

)
. (95)

When m→ 1, u36 and u37 all recover

u38 = 2 sin−1

(
± tanh ξ

1± sech ξ

)
, c =

4α

k2
. (96)

Case 21 If a0 = 1/4, a2 = −(2−m2)/2, a4 = m4/4,
then

y =
sn ξ

1± dn ξ
, b0 = 0, b1 = ± m2√

2−m2 + 2
√

1−m2
,

c =
4α

(
√

2−m2 + 2
√

1−m2)k2
, 0 < m ≤ 1 , (97)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u39 = 2 sin−1

(
± m2√

2−m2 + 2
√

1−m2

sn ξ

1± dn ξ

)
. (98)

Case 22 If a0 = 1/4, a2 = −(2−m2)/2, a4 =
(m4)/4, then

y =
sn ξ

1± dn ξ
, b0 = 0, b1 = ± m2√

2−m2 − 2
√

1−m2
,

c =
4α

(
√

2−m2 − 2
√

1−m2)k2
, 0 < m ≤ 1 , (99)

where k is an arbitrary constant. So the solution to SSG
equation (1) is

u40 = 2 sin−1

(
± m2√

2−m2 − 2
√

1−m2

sn ξ

1± dn ξ

)
. (100)

When m→ 1, u39 and u40 all recover u38.

Remark Transformation (49) and the solutions from
u15 to u40 in terms of Jacobian elliptic functions have not
been given in the literature.

5 The Fourth Kind of Transformation and
Solutions to SSG Equation
The fourth transformation is introduced in the form

u = 2 cos−1 v or v = cos
u

2
, (101)

and then the SSG equation (1) can be rewritten as

(1− v2)vtx + vvtvx + αv(1− v2)2 = 0 . (102)

We can see that the difference between Eq. (102) and
Eq. (50) is that the −α in Eq. (50) is replaced by α in
Eq. (102), so the solutions to Eq. (1) under the transfor-
mation (101) can be easily obtained by replacing α by −α

and sin by cos in solutions from u15 to u40. So we have

b0 = 0, b1 = ±
√
−a4k2c

α
,

α

k2c
= −−a2 ±

√
a2
2 − 4a0a4

2
, (103)

with constraints

−a4k
2c

α
> 0, a2

2 − 4a0a4 ≥ 0 . (104)

Similarly, there are some cases to be considered. For ex-
ample,
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Case 1 If a0 = 1, a2 = −(1 + m2), a4 = m2, then
the solution to SSG equation (1) is

u41 = 2 cos−1(±m sn ξ) . (105)

Case 2 If a0 = 1, a2 = −(1 + m2), a4 = m2, then
the solution to SSG equation (1) is

u42 = 2 cos−1(± sn ξ) . (106)

Actually, when m→ 1, u41 and u42 all recover

u43 = 2 cos−1(± tanh ξ), c = − α

k2
. (107)

with
Case 3 If a0 = 1 −m2, a2 = 2m2 − 1, a4 = −m2,

then the solution to SSG equation (1) is

u44 = 2 cos−1(± cn ξ) . (108)

Actually, when m→ 1, u44 recovers

u45 = 2 cos−1(± sech ξ), c = − α

k2
. (109)

Case 4 If a0 = m2 − 1, a2 = 2−m2, a4 = −1, then
the solution to SSG equation (1) is

u46 = 2 cos−1(±dn ξ) . (110)

Actually, when m→ 1, u46 recovers u45.
Case 5 If a0 = m2 − 1, a2 = 2−m2, a4 = −1, then

the solution to SSG equation (1) is

u47 = 2 cos−1
(
± 1√

1−m2
dn ξ

)
. (111)

Case 6 If a0 = m2, a2 = −(1 + m2), a4 = 1, then
the solution to SSG equation (1) is

u48 = 2 cos−1
(
± 1

m
ns ξ

)
. (112)

Case 7 If a0 = m2, a2 = −(1 + m2), a4 = 1, then
the solution to SSG equation (1) is

u49 = 2 cos−1(±ns ξ) . (113)

Actually, when m→ 1, u48 and u49 all recover

u50 = 2 cos−1(± coth ξ), c = − α

k2
. (114)

Case 8 If a0 = −m2, a2 = 2m2 − 1, a4 = 1 −m2,
then the solution to SSG equation (1) is

u51 = 2 cos−1(±nc ξ) . (115)

Case 9 If a0 = −1, a2 = 2−m2, a4 = m2 − 1, then
the solution to SSG equation (1) is

u52 = 2 cos−1(±nd ξ) . (116)

Case 10 If a0 = −1, a2 = 2−m2, a4 = m2−1, then
the solution to SSG equation (1) is

u53 = 2 cos−1
(
±
√

1−m2 nd ξ
)

. (117)

Case 11 If a0 = 1, a2 = 2m2 − 1, a4 = (m2 − 1)m2,
then the solution to SSG equation (1) is

u54 = 2 cos−1
(
±
√

1−m2 sd ξ
)

. (118)

Case 12 If a0 = 1, a2 = −(1 + m2), a4 = m2, then
the solution to SSG equation (1) is

u55 = 2 cos−1(±m cd ξ) . (119)

Case 13 If a0 = 1, a2 = −(1 + m2), a4 = m2, then
the solution to SSG equation (1) is

u56 = 2 cos−1(± cd ξ) . (120)

Case 14 If a0 = m2(m2 − 1), a2 = 2m2 − 1, a4 = 1,
then the solution to SSG equation (1) is

u57 = 2 cos−1

(
± 1√

1−m2
ds ξ

)
. (121)

Case 15 If a0 = m2, a2 = −(1 + m2), a4 = 1, then
the solution to SSG equation (1) is

u58 = 2 cos−1
(
± 1

m
dc ξ)

)
. (122)

Case 16 If a0 = m2, a2 = −(1 + m2), a4 = 1, then
the solution to SSG equation (1) is

u59 = 2 cos−1(±dc ξ) . (123)

Apart from these Jacobian elliptic solutions, y also has
some rational solutions in terms of Jacobian elliptic func-
tions, for example,

Case 17 If a0 = −(1−m2)/4, a2 = (1 + m2)/2,
a4 = −(1−m2)/4, then the solution to SSG equation (1)
is

u60 = 2 cos−1

(
±
√

1−m2

1 + m

dn ξ

1±m sn ξ

)
. (124)

Case 18 If a0 = −(1−m2)/4, a2 = (1 + m2)/2,
a4 = −(1−m2)/4, then the solution to SSG equation (1)
is

u61 = 2 cos−1

(
±
√

1−m2

1−m

dn ξ

1±m sn ξ

)
. (125)

Case 19 If a0 = m2/4, a2 = −(2−m2)/2, a4 =
m2/4, then the solution to SSG equation (1) is

u62 = 2 cos−1

(
± m√

2−m2 + 2
√

1−m2

m sn ξ

1± dn ξ

)
. (126)

Case 20 If a0 = m2/4, a2 = −(2−m2)2, a4 =
m2/4, then the solution to SSG equation (1) is

u63 = 2 cos−1

(
± m√

2−m2 − 2
√

1−m2

m sn ξ

1± dn ξ

)
. (127)

When m→ 1, u64 and u65 all recover

u64 = 2 cos−1

(
± tanh ξ

1± sech ξ

)
, c =

4α

k2
. (128)
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Case 21 If a0 = 1/4, a2 = −(2−m2)/2, a4 = m4/4,
then the solution to SSG equation (1) is

u65 = 2 cos−1

(
± m2√

2−m2 + 2
√

1−m2

sn ξ

1± dn ξ

)
.(129)

Case 22 If a0 = 1/4, a2 = −(2−m2)/2, a4 = m4/4,
then the solution to SSG equation (1) is

u66 = 2 cos−1
(
± m2√

2−m2 − 2
√

1−m2

sn ξ

1± dn ξ

)
. (130)

When m→ 1, u65 and u66 all recover u64.

Remark Transformation (101) and the solutions from
u41 to u66 in terms of Jacobian elliptic functions have not
been given in the literature.

6 Conclusion
In this paper, four transformations are introduced to

solve single sine-Gordon equation by using the knowledge
of elliptic equation and Jacobian elliptic functions. It is
shown that different transformations are required in or-
der to obtain more kinds of solutions to the single sine-
Gordon equation. Here some new solutions have not been
reported in the literature. It is shown that different trans-
formations play different roles in obtaining exact solutions,
some transformations may not work for a specific param-
eter of SSG equation (1). Of course, there are still more
efforts needed to explore what kinds of transformations
are more suitable to solving sine-Gordon equation. Be-
cause different transformations result in different partial
balances for sine-Gordon equation, which will lead to dif-
ferent expansion truncations in the elliptic equation ex-
pansion method. Finally, these will result in different so-
lutions of the sine-Gordon equation.
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