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Abstract

In this paper, dependent and independent variable transformations are introduced to solve the
sine—Gordon (SG) equation by using the knowledge of elliptic equation and Jacobian elliptic
functions. It is shown that different kinds of solutions can be obtained for the (SG) equation,
including breather solutions and breather lattice solutions.

PACS number: 03.65.Ge

(Some figures in this article are in colour only in the electronic version.)

1. Introduction nonlinearities in polyenes and related low-dimensional elec-
tronic materials 9, 10]. In a resonant five-fold degenerate
Sine-Gordon (SG)-type equations, including the (SGhedium, the propagation and creation of ultra-short optical
equation [, 2] pulses, the SG and DSG models are usually used. However, in
Uyt = Sinu, (1) some cases, one has to consider other SG equations. For in-
stance, the TSG equation is used to describe the propagation
of strictly resonant sharp line optical pulsdsj.
Due to the wide applications of SG-type equations,

the double SG (DSG) equation

= aSinu + Bsi
Uce = arsinu + fsinl, @ many solutions to them, such as taooths, tarr‘tanhs,
and the triple SG (TSG) equation tgrrlsecrs, tqwlsns and so on, have been obtained in
different functional forms by different methods, R, 14-23).
Uyt = aSinu + Bsin2u + ysindu, (3) Besides these solutions, there is a particularly interesting type

of solution called the breather solution and the breather lattice
are widely applied in physics and engineering. For examplgs|ution. Typically analytical expressions for these breather-
the DSG equation is a frequent object of study ifpe solutions are unavailable and such solutions have to be
numerous p_hysical a_lpplications, such as Josephson arrgyed by means of a numerical methd@,[24, 25]. In this
ferromagnetic materials, charge density waves and Sm@gmer phased on the introduced transformations, we will show
tic liquid crystal dynamics 3-7]. Actually, SG and DSG gy stematical results about these breather-type solutions for the

equations also arise in nonlinear optitde spin waves and g equation 1) by using the knowledge of elliptic equation
other fields. For example, in the context of differential geonyn 4 jacobian elliptic function26-30).

etry, the SG equation’s solutions correspond to surfaces of

constant negative curvatur8][ and these solutions are spa-

tially periodic, they can be a soliton lattice and a breath&. The breather solution and breather lattice

lattice. Usually, breathers can directly affect electronigolutions to the SG equation

optical, and transport properties of a materid&-12]

due to the breather's spatial localization and temporallp order to solve the SG-type equations, certain dependent or
periodic characteristics. Specifically, they can enhance optidadlependent variable transformations must be introduced. For
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example, the dependent variable transformation

u
u=4tanlv or v= tanz,

(4)

has been introduced i1,[2, 14] to solve the SG equation and

the DSG equation.

Considering 8), (10) and (3), we have the separated
variable relations

a2
gnzVA + 12V + 1y,
(14)

uz= V7?2 =

214 2
s =—NU"+u U+,

and corresponding constraints

So, in order to derive the breather solution and breather

lattice solutions to the SG equatiod)( first of all, we
introduce independent variable transformation

sS=ax+bt+s, r =cx+dt+rg,

(5)

wheresy andrg are two constants.
Considering the transformatio®)( equation {) can be

rewritten as
abuss+ (ad+bo)ug, +cdu, = sinu.

(6)

Compared to the transformation given ird, [ 2],

bc

a
aszl—Cz/L2=5, a’vy +c%v, =0, dz—g. (15)

Obviously, only whera =c, b= —d andb = % is (15)
the same as given inl]; actually, we will see below that
this will omit some important solutions. Furthermore, not
all Jacobi elliptic functions satisfyingld) can satisfy the
constraints 15). Only some combinations of these Jacobi
elliptic functions are the solutions that the SG equatibn (
can admit. Next we will show the details.

First of all, let us examine some special cases, where the

solutions can be expressed in terms of elementary functions.

transformation §) has less constraints, of course, this Wilkg, convenience. we sph = p?, v1 = 2, then we have
let us have more different types of solutions to the SG

equation {).
Next, we choose dependent variable transformation

u=4tan? [@}
V)]’

(7
just as giveninl, 2].

Substituting 7) into (6) yields
UsVe

ab[(U2+V2)UUSS - ZUS} +(ad+bo) [(UZ—V%W}

V,
—cd [(u2+vz)%—2vr2} =V2_U2 (8)

U2= —n2U%+p2U2+g?,
a2 a2 a a2
V2=_2V4+ 2 Rn2_ = V2__ 2'
el <c2 bc? 2
Case 1n=0,a’p?>—a/b > 0,q = 0. Here (L6) yields

— atarrt ja2 . a
u; =4tan [yexp(ﬂ:ps:t c2p bczr)] a7

wherey is integration constant, and solutiohi/f is called the
shelf-shaped solutiori].

(16)

Case 2n=0,a’p?>—a/b > 0,q # 0. From (L6), one has

Successive differentiation of this result with respect to

boths andr results in

Uss Vir o (W
2abV —=) —2cd —_— bo) |2 —
" V<U>s ¢ UUS(V)f(aOI+ C)[US(V>r

o ($) (5) ()]

In order to separate variables, b, c andd must satisfy the
condition

ad+bc=0. (10)

Thus we have
1 Uss cd 1 Virl 0
Uus\ U J, abVvVVv \ V r_ ’

Here we assume that?+b%+c?+d?#£0, and from (1),
one has
Uus \ U /.

—n?U%+ U + g,

(11)

_cd 1 (Ve
“abv\y \ V

)r =—-4n?,  (12)

V2 =

r

uz=

ab , 4 2
——n V' + oV + .
s cd Hn2 2

(13)
16

4| [a’bp?—a
U2::|:4tan |: W

sinh(ps+c;y)
x ,  (18)
costy/(a2/c?) p? —a/(bA)r + c»]

wherec; andc; are constants of integration, and solutids)(
represents the collision of two soliton [

Case 3.n #0,q = 0. Here three subcases are of interest.

Case 3a.a?p? —a/b > 0. The result is similar to1). One
has

aZbp?
= t4tant| | ————
Us an [ a2bp?—a
 Sinh(y/(8%/c?) p? — a/ (bA)r +¢,) a9
coshps+cp)
wherec; andc; are constants of integration.
Case 3ba?p? —a/b = 0. The analytical solution is
_ -1[ (8P
us = 44tan [( c r+ cz> sechi{ps+ cl)] , (20)
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wherec; andc; are constants of integration. The above two solutionslg andu- are still two solutions
expressed in terms of elementary functions where the special
Case 3ca?p? —a/b < 0. We obtain the breather solution  functions can only take their limiting forms.

- a2bp? Case 3.WhenU = sn(s, k) andV = nd(r, m) = Wlm) and
5= a_atbp? then from (4), we have
sin (\/a/(bc2) _ (aZ/CZ) p2r + CZ) n2 = _kZ’ n1= —(1 +k2)’ V= 1, (28)
X , (21) 2
cosh(ps+cy) a—2n2=—(1—m2), upr=2—m?, vy=—1.
c

wherec; andc, are constants of integration. Substituting 28) into the constraintsl), the parameters

) ] can be determined as
The solutions above, expressed in terms of elementary

functions have been reported id][ here we can recover K—1—mt a2=c p=— 1

these solutions by using the above mentioned transformations. ’ ' 22—-m?a’ (29)
Apart from these solutions, there are still some solutions 1

expressed in terms of suitable combinations of only some d= iM’

Jacobi elliptic functions, but not all Jacobi elliptic functions.

Next, we will show these suitable combinations of som@en the solution to the SG equatidy) (s

Jacobi elliptic functions to satisfy the SG equatidj; there Us = 4tarr Hsn(s. Kydn(r. m)]. (30)

are 13 cases which need to be addressed.

This is the periodic breather lattice solution given and
Case 1WhenU = sn(s, k) andV = dn(r, m), where sts,K)  gnaiysed by §, 12, whenk — 0, i.e. m— 1, srs, k) —
and d_r(r, m), are thg Jacobi sine e!|lptIC functlgn and thesin(s), dn(r, m) — secHr), the breather lattice solutior3Q)
Jacobi elliptic function of the third kind, respectively, akd ,-ns out to be a breather solution
and m are their modulusZ8-30]. And then from (4), we

sin(s
have Ug = 4tan? [—( ) } ) (31)
5 5 5 coshr)
n =—k, /,L1=—(1+k ), v =1, . . . .
) (22) Figuresl and?2 describe the space-time evolution of the
a_nz =1, pp=2-m? vy=—(1—md. periodic solution of equations3() and @1), for different
c? values of m and k, their behaviours are quite different.

Figure 1 shows the evolution of the breather lattice solution
with the periodic characteristics in both spatial and temporal
directions, while figure 2 is just the normal breather solution
which has the periodic characteristics just in a specific
direction.

Besides the above breather lattice solution, which has
been reported elsewhere before, there are still some which

1 have not been reported, and these solutions will be addressed
ug = 4tam? [tanh(ax - Et +so>] . (24) below.
Case 4.When U = cd(s, k) = gﬂgg and V = nd(r, m) =
1 where ciis, k) is the Jacobi cosine elliptic func-

Substituting 22) into the constraintsl), the parameters
can be determined as

1
k=1, m=0, a’=c?>, b=-—, d=+—, (23
4a (23)

then the solution to the SG equatidl) {s

dn(r,m)’
Case 2.When U =ns(s, k) = gy and V =nd(r, m) = tigrnnEZS—SO]. And then from (.4) and the constraintd.6), the
Wl.m)' and then from14), we have parameters can be determined as
n2:_17 /J«1=_(1+k2)7 V1=k21 k2=1—m? al=c? b—_;
) (25) - ’ ST T 22—-mda’ (32)
—nP=—1-mP), pp=2-n", v=-1 de+ 1
¢ T T22-mda’
Substituting 25) into the constraintsl), the parameters ) i
can be determined as then the solution to the SG equatidl) {s
1 1 U1 = 4 tanm Ycd(s, kydn(r, m)], 33
k=1, m:O, a.2:C2, b:_a, d=:|:4_a, (26) 10 [ ( ) ( )] ( )
when k— 0, i.e. m— 1, cds, k) — cogs), the breather
then the solution to the SG equatid) {s lattice solution 83) turns to be another breather solution
- 1 .| cogs)
u; = 4tarm! | coth( ax— —t + ) 27 up = 4tan? . 34
! [ ( da SO)} 27) 1 [cosr(r)} (34)
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Figure 2. The upper panel shows the space-time evolution of the
breather solution of equationg9) and @1), where the parameters

= arechosenas=1,c=1,m=1,5 =rqg=0, from which the
other parameters can be determinethas—1,d = 1, k=0.
21 The bottom panel shows the spatial profileé at 10.
1] Substituting 85) into the constraintsl), the parameters can
be determined as
0 1
Y K=1-m? a’=c? b=—"-——,
2(1-2m?)a
-1 T 1 (36)
d=+————,
5 2(1-2m?)a
then the solution to the SG equatidl) {s
-3
10 £ i z 10 U1z = 4 tar*[en(s, kyen(r, m)]. (37)

# Case 6.WhenU =cn(s, k) andV =ds(r, m) = %, and
Figure 1. The upper panel shows the space-time evolution of the then from (4), we have
breather lattice solution of equatiorzd] anfl B0), where the n? = K2, = k2 —1, pp=1— K2,
parameters are chosenas-1,c=1,m= 3,5 =ro=0, from )

i i 2 4g=2 a
whm?the othgr parameters can be deterrnlndmqug\s— s, d=2, _an =1 = om? — 1 = —m2(1 _ m2).
k= 73 The middle panel shows the spatial profile at 0 and the C

bottom panel at = 10. Substituting 88) into the constraintsl(), the parameters
can be determined as

(38)

Case 5.WhenU = cn(s, k) andV = no(r, m) = o, and 1-k?>=k’m?(1-m?), k?a’=c?
then from (L4), we have 1 be (39)
T @Ek—2km2—1a’  a’
2 _ L2 _ 2 _ 2
5 =k =201 =1k then the solution to the SG equatidt) (s
a
G =1-m" pp=2m°—1 vy=-m’. (35) Uz = 4tarr*[cn(s, k)sdr, m)]. (40)
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Case 7.When U =sd(s, k) and V =nc(r, m), and then
from (14), we have

N’ =k’1-k?, ur1=2k*-1, v =1,

o2 (41) B
2 _ 2 — om?2 2 4
—=n“=1-m", =2m -1, v,=-—m".
2 M2 2 5
0
Substituting 41) into the constraintsl), the parameters iy,
can be determined as -4
B
1-m2= m2k2(1 _ k2), a2 = mzcz’ -8
(42)
b m? _ bc
T 2m2k2-3m2+1a’ T a’
then the solution to the SG equatidl) {s
Uis = 4 tanm Y[sd(s, kyen(r, m)]. (43) ’5';
If the independent variable transformation givenihig 44
adopted, the breather lattice solutiamg and u;4 can only ]
take their limiting form (i.e. breather solution) 21
1 [ sin(r) i
Us=4tamt| ——— |, 44 ]
1 [cosr(s)} (44) ]
where k=1 and m=0 is chosen in the breather ]
lattice solutionuy3, k=0 andm =1 in the breather lattice E
solutionuyg. ]
ks %y
Case 8.When U =ns(s, k) and V =dn(r, m), and then 10 5 0 g 10
from (14), we have
n®=—1, mr=-—>1 +k2), V1= k2, Figure 3. The upper panel shows the space-time evolution of the
2 (45)  breather solution of equation4@) and @8), where the parameters
a_nz =—1 w=2-m uv=-—(1-—md. arechosenas=1,c=1,m=1,5 =ro =0, from which the
c2 other parameters can be determinethas—3,d = 3, k=0. The

o ) ) bottom panel shows the spatial profiletat 10.
Substituting 45) into the constraintsl), the parameters

can be determined as

Case 10.When U =nc(s, k) and V =cn(r, m), and then
kK2=1-m? a’=c?
- ’ - (46) from (14), we have

b= 1 d= :I:—1
T 22—-m?)a’ 22— m?)a’ n=-1-k%, p=2k%-1 vi=-k, (50)
2
then the solution to the SG equatidt) {s %nZ =-—m?, po=2m*—1 v,=1-m
uie = 4 tan Y[ns(s, kynd(r, m)], (47)

Substituting $0) into the constraintsl), the parameters

whenk — 0, i.e.m— 1, the breather lattice solutiosty) Can be determined as
turns out to be another kind of breather solution 1

K=1-m? a’=c’, b=_-—"———
’ ’ 2(1-2m?)a’
coshr
U7 = 4tan? L . (48) 1 (51)
sin(s) =ft———,
2(1-2m?)a
Figure 3 describes the space-time evolution of anothehen the solution to the SG equatid) {s
breather solution of equationst@) and @8), where its
behaviour is quite different from that shown in figite U1e = 4 tan Y[nc(s, kync(r, m)], (52)

Case 9.When U =dc(s, k) and V =dn(r,m), and then whenk — 0, i.e. m— 1, the breather lattice solutiorb2)
from (14), we have the same parameters determined!@s (turns out to be another kind of breather solution
and then the solution to the SG equati@pié

coshr)

—} . (53)

cogs)

Ugo = 4tan?t [
19

U1g = 4 tarm Ydc(s, k)nd(r, m)]. (49)
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Case 11.When U =nc(s, k) and V =sd(r, m), and then
from (14), we have

= —(1-K), m=2C—1 uy=-K.

) (54)
a o, 2
gn =-—m?’A-m?), pe=2m>—1, v,=1 #’h‘t‘l‘
o . . mlﬁﬂmﬂ *#ﬂn i
Substituting $4) into the constraintsl), the parameters ‘M mm .m«* o HH.
can be determined as " ' .i*ﬁiﬁﬂ Him H !'i
ill $ L
1_K2 = k2m2(1 _ mz), K2a2 = c?, W’E:: *",'*T“
(55) ‘ l,uni &
b 1 de bc
T (3k2—2k2m?2 —1)a’ ~a’

then the solution to the SG equatidl) {s

Uy = 4 tan Y[nc(s, k)ds(r, m)]. (56) ]
Case 12.When U =dg(s, k) and V =cn(r, m), and then
from (14), we have 27
2 _ _ 2 _ 2 2 1 —
n“=-1 wu1=2k"-1 v3=-k°(1—-k9, ]
, ' ' CUNE
%nzz—mz, uz=2m"—1, vy=1-m. H ]
-1
Substituting §7) into the constraintsl), the parameters ]
can be determined as 21
1-m?=m’k’(1—k?, a?=m?c? &k

2 b (58) T T T T T

m __nc -10 5 i 5 10

T 2mk2—3m2+Da’ T oa’
then the solution to the SG equatidt) {s Figure 4. The upper panel shows the space-time evolution of the
_ —1 breather lattice solution of equatior&lf and 62), where the
Uzz = 4tan -[ds(s, k)nc(r, m)]. (59) parameters are chosenas: 0.8,c=1,m=0.8,5 =1, =0, from
Case 13.When U = nd(s, k) and V = nc(r, m), and then which the other parameters can be determinell-a$.889,

from (14), we have td:=1—0.l.111,k = 0.66. The bottom panel shows the spatial profile at

(60) 3. Conclusion

a2
?nz =1-m’ pp=2m" -1 vp=—nt. In this paper, dependent and independent variable transfor-
Substituting 60) into the constraintsl), the parameters mations are introduced to solve the SG equation by using
can be determined as the knowledge of elliptic equation and Jacobian elliptic
1 functions. It is shown that different kinds of solutions, such
kK?=2— =, a’ = m?c?, as the breather solution and the breather lattice solution, can
gn (61) be obtained to the SG equation. We can see that besides the
_ m _ _b_C solutions expressed in terms of elementary functions, there
2(1-m?a’ a’ are still solutions expressed in terms of the different combi-

nations of Jacobi elliptic functions. However, not all the com-
binations of Jacobi elliptic functions are solutions to the SG
= 4tanY[nd(s, k)en(r, m)]. (62) equation ), only those that can satisfy the constrairit§)(
can be solutions to the SG equatidl). (Furthermore, when
Vitferent independent variable transformations are adopted,
there will be different results. For example, when we choose
the independent variable transformation

then the solution to the SG equatidl) {s

Similarly, if the independent variable transformatio
given in [1] is adopted, the breather lattice solutians, uy»,
anduyz can also only take their limiting forms.

Figure 4 describes the space-time evolution of the
breather lattice solution of equation8lf and 62), whose 1 1
behaviour is different from what is shown in figureActually, S=axt_t+s, I=ax—_t+r, (63)
all graphical presentations given in this paper are different,
small or large. When the modulus or k is set as different Which is given in [], some breather lattice solutions such

values, the breather lattice solutions given in this paper &8 Uis, U1s, U21, U2z and usz expressed in terms of Jacobi
also different. elliptic functions will be omitted. Under the independent

20
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variable transformationSj, all solutions can be expressed in [4] Leung K M, Mills D L, Riseborough P S and Trullinger S E
terms of the 13 basic Jacobi elliptic functions listed in this 1983Phys. Re\B 274017

P cAingif2] Salerno M and Quintero N R 20@2hys. ReVE 65025602
paper, though there are only 11 combinations of Jacobi elllptng] Lou S Y and Ni G J 198®hys. LettA 14033

functions that can satisfy the constraints) [7] GaniV A and Kudryavtsev A E 199Bhys. Re\E

The objective of this paper is to obtain more kinds 603305
of breather lattice solutions, so we do not touch on thg8] McLachlan R 199Math. Intelligencerl6 31
stability of those solutions which are nonsingular in the whold®! Kreis J D, Saxena A, Bishop AR and Martin R L 1998
domain. Although we do not show the stability analysis tg Sazeﬁzel‘(’%ssﬁeﬁl\?g and Bishop A R 2084nth. Met
our solutions, from the results for the SG equation giv 11645
by Kevrekidiset al [12] and for the (modified Korteweg-de [11] Henning D 200(Phys. ReVE 62 2846
Vries) mKdV the equation given by Kevrekidigt al [12] Kevrekidis P G, Saxena A and Bishop A R 20Rhys. RevE
[24, 25], we know that the solutions shown in this paper 64026613

: ] Bullough R K, Caudrey P J and Gibbs H M 1986litons
are usually unstable, but not all solutions are unstable. Ever ed R K Bullough and P J Caudrey (Berlin: Spinger)

thpggh the squFions are unstable, they can be stabili;gd by[@ﬁ Panigrahi M and Dash P C 20@ys. LettA 321330
driving or damping, this has been reported by Kevrekidial [15] Yang J S and Lou S Y 2008hin. Phys. Lett21 608
[12, 24, 25]. [16] Peng Y Z 200Phys. LettA 314402

Due to the wide applications of the SG equation, thd7] Sirendaoreji and Sun J 20621ys. LettA 298133

: . . : : ; : 118] Chow K’ W 2002Wave MotiorB571
analytical solutions given in this paper will be helpful i 19] FUZ T, Liu S K and Liu S D 200Z. Naturf.a59933

related research. [20] Fu Z T, Liu SK and Liu S D 2005 0ommun. Theor. Phys.
431023
[21] FUZT, Yao Z H, Liu S K and Liu S D 2008ommun. Theor.
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