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Exact Solutions to Short Pulse Equation∗
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Abstract In this paper, dependent and independent variable transformations are introduced to solve the short pulse

equation. It is shown that different kinds of solutions can be obtained to the short pulse equation.
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1 Introduction
The short pulse equation (SPE for short)

uxt = u +
1

6
(u3)xx, (1)

was first introduced by Schäfer and Wayne[1] as a model
equation to describe the propagation of ultra-short light
pulses in silica optical fibres. Different from the cele-
brated nonlinear Schrödinger equation (NLSE for short),
which is used to model the evolution of slowly varying
wave trains, the SPE is proposed to describe the pulse
whose spectrum is not narrowly localized around the car-
rier frequency. It has been proven that as the pulse length
shortens, the NLSE approximation describing the optical
pulses becomes steadily less accurate, while the SPE pro-
vides a better and better approximation.[2]

Contrary to the well studied NLSE, we know lit-
tle about SPE. It has been proven that the SPE is
an integrable equation possessing a Lax pair[3] of the
Wadati–Konno–Ichikawa type[4] and the bi-Hamiltonain
structure.[5] Usually, Eq. (1) is difficult to solve, some
transformations have to be introduced. For example,
Parkes[6] introduced a new dependent variable z

z =
u − v

|v| , (2)

and assumed that z is an implicit or explicit function of
η, where

η = x − vt − x0, (3)

v and x0 are arbitrary constants and v 6= 0. Through
above transformations, he obtained periodic-hump solu-
tion, solitary loop solution and periodic loop solution,
“figure-eight” solution and other type solution to Eq. (1).

The transformation between the SPE and the sine-
Gordon equation was discovered in Ref. [3] and the deriva-
tion of this transformation was considerably simplified in
Ref. [7], and later it was used in Ref. [8] to obtain exact
loop and pulse solutions of the SPE from the well-known
kink and breather solutions of the sine-Gordon equation.
The recursion operator found in Ref. [3] was used to study
the N-loop soliton solutions to SPE.[9]

The solutions found in above mentioned references
have been shown to result from a delicate nonlocal bal-
ance between dispersion and nonlinearity, and their sta-
ble propagation is confirmed by numerical simulations.[10]

Since SPE is a current research interest in nonlinear opti-
cal fibres theory, in this paper, based on the newly intro-
duced transformations, we will show systematical results
for the SPE (1) by using the knowledge of elliptic equation
and Jacobian elliptic functions.[11−15]

2 Transformed Equation (1)
In order to solve the SPE, certain dependent or in-

dependent variable transformations must be introduced.
Starting from Eq. (1), we define

x = w(y, τ ), t = τ, (4)

then we have
∂

∂x
=

1

wy

∂

∂y
,

∂

∂t
=

∂

∂τ
− wτ

wy

∂

∂y
. (5)

Substituting this transformation into Eq. (1) yields

[w3
y + wyu2

y]u = w2
yuτy − wτwyuyy − (wτywy − wτwyy)uy

− 1

2
wyu2uyy +

1

2
wyyu2uy. (6)

If we set
u(x, t) = R(y, τ ), (7)

then from Eq. (6) we have

[w3
y + wyR2

y]R = w2
yRτy − wτwyRyy − (wτywy − wτwyy)

× Ry − 1

2
wyR2Ryy +

1

2
wyyR2Ry. (8)

It is obvious that the key step to solve the Eq. (8) is to
build the bridge between w(y, τ ) and R(y, τ ), in Ref. [3],
the relation between w(y, τ ) and R(y, τ ) is

wτ = −1

2
R2 = −1

2
X2

τ , (9)

from which one can derive the well-known sine-Gordon
equation

Xτy = sinX(y, τ ). (10)

Since the solutions to the sine-Gordon equation has
been well studied, we can apply the above relation to de-
rive the solutions to SPE easily. Of course, there still exist
more relations between w(y, τ ) and R(y, τ ).

If we choose

R(y, τ ) = wτ (y, τ ), (11)

for SPE, we have

w3
ywτ + wywτw2

τy = w2
ywττy − wτwywτyy − wyw2

τy

+ wτwτywyy − 1

2
wyw2

τwτyy
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+
1

2
w2

τwyywτy. (12)

If we choose

R(y, τ ) = wy(y, τ ), (13)

for SPE, we have

w4
y + w2

yw2
yy = w2

ywτyy − wτwywyyy − wywτywyy

+ wτw2
yy − 1

2
w3

ywyyy +
1

2
w2

yw2
yy. (14)

Above transformed equations can be easily solved to
derive its traveling wave solutions, we will show this in the
next section.

3 Exact Traveling Wave Solutions to SPE
In this section, we will try ro find the traveling wave

solutions to transformed SPE (12) and (14). In doing so,
we first take the transformation in the following frame

ξ = k(y − cτ ), (15)

where k is wave number and c is wave speed.
Combining Eq. (15) with Eq. (12) leads to

w2
ξ +

1

2
k2c2wξξ +

1

2
k2c2wξwξξξ = 0. (16)

Combining Eq. (15) with Eq. (14) leads to

w2
ξ +

1

2
k2wξξ +

1

2
k2wξwξξξ = 0. (17)

It is obvious that Eq. (16) and Eq. (17) can be ex-
changed by a simple transformation k2c2 ↔ k′ 2, if we
find solution to Eq. (16), then we can apply this transfor-
mation to find the solution to Eq. (17), vice versa.

In fact, Eq. (16) or Eq. (17) is still not easily to solved
by the usual function expansion methods, such as Jacobi
elliptic function expansion methods,[11,12] for the expan-
sion rank of Eq. (16) is zero.

In order to solve Eq. (16) exactly, we set

V =
wξξ

wξ

, (18)

then Eq. (16) can be rewritten as

Vξ = − 2

k2c2
(k2c2V 2 + 1), (19)

which can be integrated to derive

V = − 1

kc
tan

[ 2

kc
(ξ − ξ0)

]

, (20)

where ξ0 is an integration constant.

Substituting Eq. (20) back to Eq. (18) yields
wξξ

wξ

= − 1

kc
tan

[ 2

kc
(ξ − ξ0)

]

, (21)

from which we have

ln|wξ| =
1

2
ln

∣

∣

∣
cos

[ 2

kc
(ξ − ξ0)

]
∣

∣

∣
+ C0, (22)

where C0 is an integration constant.
Equation (22) can be rewritten as

wξ = C ′

√

∣

∣

∣
cos

[ 2

kc
(ξ − ξ0)

]
∣

∣

∣
, (23)

where C ′ is a constant related to integration constant C0.
So the solution to the SPE (1) is

u(x, t) = −kcC ′

√

∣

∣

∣
cos

[ 2

kc
(ξ − ξ0)

]
∣

∣

∣
. (24)

From Eq. (23), we have

x = w =
C ′

√
2kc

F
{

√
2

2
, arcsin

[√
2sin

(

−ξ − ξ0

kc

)]}

−
√

2C ′

kc
E

{

√
2

2
, arcsin

[√
2sin

(

−ξ − ξ0

kc

)]}

, (25)

with

F (m, ϕ) =

∫ ϕ

0

dθ
√

1 − m2sin2θ
, (26)

called the normal elliptic integral of the first kind, and

E(m, ϕ) =

∫ ϕ

0

√

1 − m2sin2θdθ, (27)

called the normal elliptic integral of the second kind,[16]

where 0 ≤ m ≤ 1 is called modulus of Jacobi elliptic
functions.[13−15]

Obviously, the solution of SPE (24) and (25) has not
been reported in the literature.

4 Conclusion
In this paper, we presented the process to find exact

solutions for the SPE and obtained some new types of so-
lutions, these solutions may be applied to describe and/or
explain some phenomena found in the nonlinear optical
fibres, since the model has been proposed to model short
optical pulse. Due to the solutions presented in this pa-
per are just some special solutions, more methods are still
needed to find more types of solutions to SPE.
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