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In this Letter, a new kind of Lamé functions are given. Based on the new Lamé functions and Jacobi
elliptic function, the perturbation method is applied to the nonlinear equations, and many multi-order
solutions of novel forms are derived. In addition, it is shown that different Lamé functions can exist in
the first order solutions of nonlinear system.
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1. Introduction

During the past three decades, the nonlinear wave researches
have made great progress, among which a number of new meth-
ods have been proposed to get the exact solutions to nonlinear
wave equations. Among these methods, the homogeneous balance
method [1], the hyperbolic tangent function expansion method
[2,3], the nonlinear transformation method [4,5], the trial func-
tion method [6,7], sine-cosine method [8], the Jacobi elliptic func-
tion expansion method [9–11], auxiliary equation and mapping
method [12], Exp-function method [13] and so on are widely ap-
plied to solve nonlinear wave equations exactly. Furthermore, it
deserves to discuss the stability of these solutions, there perturba-
tion method is often applied to derive the multi-order exact solu-
tions. In this Letter, based on the Jacobi elliptic functions [14,15]
and a new kind of Lamé functions, perturbation method [15,16] is
applied to get the multi-order exact solutions to some nonlinear
equations.

2. Lamé equation and Lamé functions

Usually, Lamé equation [14,15] in terms of y(x) can be written
as
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d2 y

dx2
+ [

λ − n(n + 1)m2 sn2 x
]

y = 0, (1)

where λ is an eigenvalue, n is a positive integer, sn x is the Jacobi
elliptic sine function with its modulus m (0 < m < 1).

Set

η = sn2 x (2)

then the Lamé equation (1) becomes

d2 y

dη2
+ 1

2

(
1

η
+ 1

η − 1
+ 1

η − h

)
dy

dη
− μ + n(n + 1)η

4η(η − 1)(η − h)
y = 0,

(3)

where

h = m−2 > 1, μ = −hλ. (4)

Eq. (3) is a kind of Fuchs-typed equations with four regular
singular points η = 0,1,h and η = ∞, the solution to Lamé equa-
tion (3) is known as Lamé function.

There are different Lamé functions expressed in closed form,
for example, when n = 3, λ = 4(1 + m2), i.e. μ = −4(1 + m−2), the
Lamé function is

Lsn
3 (x) = η1/2(1 − η)1/2(1 − h−1η

)1/2 = sn x cn x dn x. (5)

For n = 2, when λ = 1 + m2, the Lamé functions is

Ls
2(x) = (1 − η)1/2(1 − h−1η

)1/2 = cn x dn x, (6)
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when λ = 1 + 4m2, the Lamé functions is

Lc
2(x) = (1 − η)1/2(1 − h−1η

)1/2 = sn x dn x (7)

and when λ = 4 + m2, the Lamé functions is

Ld
2(x) = (1 − η)1/2(1 − h−1η

)1/2 = sn x cn x. (8)

In Eqs. (5), (6), (7) and (8), cn x and dn x are the Jacobi el-
liptic cosine function and the Jacobi elliptic function of the third
kind [14,15], respectively. Lamé functions given in this section have
been applied to solve nonlinear equations to derive multi-order so-
lutions [17]. Is there any other kind of Lamé functions and could
they be applied to solve nonlinear equations, either? We will an-
swer this question in the next sections.

3. New Lamé equation and new Lamé functions

In fact, Lamé equation in terms of y(x) can also be written as

d2 y

dx2
+ [

λ − n(n + 1)m2 cd2 x
]

y = 0, (9)

where cd x ≡ cn x
dn x is another kind of Jacobi elliptic function with

its modulus m (0 < m < 1), and λ is an eigenvalue, n is a positive
integer, too.

Set

ζ = cd2 x (10)

then the Lamé equation (9) becomes

d2 y

dζ 2
+ 1

2

(
1

ζ
+ 1

ζ − 1
+ 1

ζ − h

)
dy

dζ
− μ + n(n + 1)ζ

4ζ(ζ − 1)(ζ − h)
y = 0,

(11)

where

h = m−2 > 1, μ = −hλ. (12)

Obviously, Eq. (11) takes the same form as Eq. (3), it is a kind of
Fuchs-typed equations with four regular singular points ζ = 0,1,h
and ζ = ∞, the solution to Lamé equation (11) is known as Lamé
function.

For Eq. (11), there also exist different Lamé functions expressed
in closed form, for example, when n = 3, λ = 4(1 + m2), i.e. μ =
−4(1 + m−2), the Lamé function is

Lcd
3 (x) = ζ 1/2(1 − ζ )1/2(1 − h−1ζ

)1/2 = cd x sd x nd x, (13)

this is another Lamé function different from that given in (5).
For n = 2, when λ = 1 + m2, the Lamé functions is

Lcd
2 (x) = (1 − ζ )1/2(1 − h−1ζ

)1/2 = sd x nd x, (14)

when λ = 1 + 4m2, the Lamé functions is

Lsd
2 (x) = (1 − ζ )1/2(1 − h−1ζ

)1/2 = cd x nd x (15)

and when λ = 4 + m2, the Lamé functions is

Lnd
2 (x) = (1 − ζ )1/2(1 − h−1ζ

)1/2 = sd x cd x. (16)

In Eqs. (13), (14), (15) and (16), sd x ≡ sn x
dn x , nd x ≡ 1

dn x are two

new Jacobi elliptic functions. Lcd
2 (x), Lsd

2 (x) and Lnd
2 (x) are three

new Lamé functions different from those given in (6), (7) and (8).
Could they be applied to solve nonlinear equations, either? We will
answer this question in the next sections. Since we have reported
the applications of Lamé functions Lsn

3 (x) and/or Ls
2(x) and/or Lc

2(x)
and/or Lc

2(x) to KdV equation and mKdV equation in the Ref. [17],
we will take these two nonlinear equations as examples to illus-
trate the applications of new Lamé functions to nonlinear equa-
tions to derive multi-order solutions of novel forms.

4. Applications of new Lamé functions to mKdV equation

mKdV equation reads

∂u

∂t
+ αu2 ∂u

∂x
+ β

∂3u

∂x3
= 0. (17)

We seek its travelling wave solutions of the following form

u = u(ξ), ξ = k(x − ct), (18)

where k and c are wave number and wave speed, respectively.
In the frame of (18), (17) can be written as

βk2 d2u

dξ2
+ α

3
u3 − cu = C0, (19)

where integration with respect to ξ has been taken once and C0 is
the integration constant.

Here we consider perturbation method and setting

u = u0 + εu1 + ε2u2 + · · · , (20)

where ε (0 < ε � 1) is a small parameter, u0, u1 and u2 represent
the zeroth-order, first-order and second-order solutions, respec-
tively.

Substituting (20) into (19), we can derive the zeroth-order, the
first-order and the second-order equations as

ε0: βk2 d2u0

dξ2
+ α

3
u3

0 − cu0 = C0, (21)

ε1: βk2 d2u1

dξ2
+ (

αu2
0 − c

)
u1 = 0 (22)

and

ε2: βk2 d2u2

dξ2
+ (

αu2
0 − c

)
u2 = −αu0u2

1. (23)

From the zeroth-order Eq. (21) and the ansatz solution

u0 = a0 + a1 cd ξ (24)

we can get the zeroth-order exact solution of mKdV equation

u01 = ±mk

√
−6β

α
cd ξ, c = −(

1 + m2)βk2. (25)

Substituting the zeroth-order exact solution (25) into the first-
order Eq. (22) leads to

d2u1

dξ2
+ [(

1 + m2) − 6m2 cd2 ξ
]
u1 = 0 (26)

which takes the same form as Lamé equation (9), so the first-order
exact solution can be written as

u11 = A1Lcd
2 (ξ) = A1 sd ξ nd ξ, (27)

where A1 is an arbitrary constant.
Substituting the zeroth-order exact solution (25) and the first-

order exact solution (27) into the second-order Eq. (23) results in

d2u2

dξ2
+ [(

1 + m2) − 6m2 cd2 ξ
]
u2

= ±
√

−6α

β

mA2
1

k
cd ξ sd2 ξ nd2 ξ (28)

which is an inhomogeneous Lamé equation of the form (9), and it
can be solved by introducing an ansatz solution

u2 = b1 cd ξ + b3 cd3 ξ. (29)
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Combining (28) with (29) reaches the second-order exact solu-
tion

u21 = ∓
√

−6α

β

(1 + m2)A2
1

12mk(1 − m2)2
cd ξ

[
1 − 2m2

1 + m2
cd2 ξ

]
. (30)

For the zeroth-order Eq. (21), the ansatz solution can also be
written as

u0 = a0 + a1 sd ξ (31)

we can get the zeroth-order exact solution of mKdV equation

u02 = ±mk

√
6(1 − m2)β

α
sd ξ, c = (

2m2 − 1
)
βk2. (32)

Substituting the zeroth-order exact solution (32) into the first-
order Eq. (22) leads to

d2u1

dξ2
+ [(

2m2 − 1
) + 6m2(1 − m2) sd2 ξ

]
u1 = 0 (33)

which takes the same form as Lamé equation (9), so the first-order
exact solution can be written as

u12 = A2Lsd
2 (ξ) = A2 cd ξ nd ξ, (34)

where A2 is an arbitrary constant.
Substituting the zeroth-order exact solution (32) and the first-

order exact solution (34) into the second-order Eq. (23) results in

d2u2

dξ2
+ [(

2m2 − 1
) + 6m2(1 − m2) sd2 ξ

]
u2

= ∓
√

6(1 − m2)α

β

mA2
2

k
sd ξ cd2 ξ nd2 ξ (35)

which is an inhomogeneous Lamé equation of the form (9), and it
can be solved by introducing an ansatz solution

u2 = b1 sd ξ + b3 sd3 ξ. (36)

Combining (35) with (36) reaches the second-order exact solu-
tion

u22 = ∓
√

6α

(1 − m2)β

(1 − 2m2)A2
2

12mk
sd ξ

×
[

1 + 2m2(1 − m2)

1 − 2m2
sd2 ξ

]
. (37)

For the zeroth-order Eq. (21), the ansatz solution can also be
written as

u0 = a0 + a1 nd ξ (38)

we can get the zeroth-order exact solution of mKdV equation

u03 = ±k

√
6(1 − m2)β

α
nd ξ, c = (

2 − m2)βk2. (39)

Substituting the zeroth-order exact solution (39) into the first-
order Eq. (22) leads to

d2u1

dξ2
+ [(

m2 − 2
) + 6

(
1 − m2)nd2 ξ

]
u1 = 0 (40)

which takes the same form as Lamé equation (9), so the first-order
exact solution can be written as

u13 = A3Lnd
2 (ξ) = A3 sd ξ cd ξ, (41)

where A3 is an arbitrary constant.

Substituting the zeroth-order exact solution (39) and the first-
order exact solution (41) into the second-order Eq. (23) results in

d2u2

dξ2
+ [(

m2 − 2
) + 6

(
1 − m2)nd2 ξ

]
u2

= ∓
√

6(1 − m2)α

β

A2
3

k
nd ξ sd2 ξ cd2 ξ (42)

which is an inhomogeneous Lamé equation of the form (9), and it
can be solved by introducing an ansatz solution

u2 = b1 nd ξ + b3 nd3 ξ. (43)

Combining (42) with (43) reaches the second-order exact solu-
tion

u23 = ±
√

6α

(1 − m2)β

(2 − m2)A2
3

12m4k
nd ξ

[
1 − 2(1 − m2)

2 − m2
nd2 ξ

]
.

(44)

Obviously, the solutions given above to mKdV equations are dif-
ferent from those we have given in the Ref. [17], these solutions
are solutions of novel forms have not been reported in the litera-
ture.

5. Applications of new Lamé functions to KdV equation

The second example we want to show is KdV equation, it reads

∂u

∂t
+ u

∂u

∂x
+ β

∂3u

∂x3
= 0. (45)

Substituting (18) into (45) yields

βk2 d3u

dξ3
+ u

du

dξ
− c

du

dξ
= 0. (46)

Integrating (46) once with respect to ξ and we have

βk2 d2u

dξ2
+ 1

2
u2 − cu = C0, (47)

where C0 is an integration constant.
Substituting (20) into (47), we get the zeroth-order, the first-

order and the second-order equations:

ε0: βk2 d2u0

dξ2
+ 1

2
u2

0 − cu0 = C0, (48)

ε1: βk2 d2u1

dξ2
+ (u0 − c)u1 = 0 (49)

and

ε2: βk2 d2u2

dξ2
+ (u0 − c)u2 = −1

2
u2

1. (50)

The zeroth-order Eq. (48) can be solved by the Jacobi elliptic
sine function expansion method, the ansatz solution

u0 = a0 + a1 cd ξ + a2 cd2 ξ (51)

can be assumed.
Applying (51) to (48), the zeroth-order exact solution can be

easily obtained

u0 = c + 4
(
1 + m2)βk2 − 12m2βk2 cd2 ξ. (52)

Similarly, substituting (52) into the first-order equation (49)
leads to

d2u1

dξ2
+ [

4
(
1 + m2) − 12m2 cd2 ξ

]
u1 = 0 (53)
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obviously this is the Lamé equation (9), its solution is

u1 = A cd ξ sd ξ nd ξ (54)

where A is an arbitrary constant.
Substituting the zeroth-order solution (52) and the first-order

solution (54) into the second-order equation (50) results in

d2u2

dξ2
+ [

4
(
1 + m2) − 12m2 cd2 ξ

]
u2

= − A2

2βk2
cd2 ξ sd2 ξ nd2 ξ (55)

it is obvious that this is an inhomogeneous Lamé equation with
n = 3 and λ = 4(1 + m2). Its solution of homogeneous equation is
just the same one as (9) and its special solution of inhomogeneous
terms can be assumed to be

u2 = b0 + b2 cd2 ξ + b4 cd4 ξ. (56)

Then applying (56) to (55), the second-order exact solution of
KdV equation (45) can be written as

u2 = − A2

48m2(1 − m2)2βk2

[
1 − 2

(
1 + m2) cd2 ξ + 3m2 cd4 ξ

]
.

(57)

The multi-order solutions to KdV equation given above are dif-
ferent from those given in the Ref. [17], these solutions are solu-
tions of novel forms to KdV equation.

6. Conclusion and discussion

In this Letter, the new Lamé equation and Lamé functions are
reported and applied to solve nonlinear equations, where mKdV

equation and KdV equation are take as two examples to illustrate
the applications of new Lamé functions to nonlinear equations to
derive the multi-order solutions of novel forms when perturbation
method is involved. The results got in this Letter is very important
for nonlinear instability of nonlinear coherent structures of non-
linear equations. Additionally, the method and results given in this
Letter can be easily applied to more nonlinear systems.
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