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ABSTRACT

In this study, observed temperature records of 12 stations from Antarctica island, coastline, and continental

areas are analyzed by means of detrended fluctuation analysis (DFA). After Monte Carlo significance tests,

different long-term climate memory (LTM) behaviors are found: temperatures from coastal and island stations

are characterized by significant long-term climate memory whereas temperatures over the Antarctic continent

behave more like white noise, except for the Byrd station, which is located in the West Antarctica. It is argued

that the emergence of LTM may be dominated by the interactions between local weather system and external

slow-varying systems (ocean), and therefore the different LTM behaviors between temperatures over the Byrd

station and that over other continental stations can be considered as a reflection of the different climatic

environments between West and East Antarctica. By calculating the trend significance with the effect of

LTM taken into account, and further comparing the results with those obtained from assumptions of

autoregressive (AR) process and white noise, it is found that 1) most of the Antarctic stations do not show

any significant trends over the past several decades, and 2) more rigorous trend evaluation can be obtained

if the effect of LTM is considered. Therefore, it is emphasized that for air temperatures over Antarctica,

especially for the Antarctica coastline, island, and the west continental areas, LTM is nonnegligible for

trend evaluation.

1. Introduction

In the context of global warming, assessment of Ant-

arctic temperature change has become a very important

issue during the past few years because of the impact that
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temperature changes may have on land/sea ice changes

(Pritchard et al. 2012; Joughin et al. 2012). Based on

measurements from regular weather stations and satellite

and reanalysis data, temperature trends have been dis-

cussed both locally and for the whole continent (Comiso

2000; Marshall 2002; Vaughan et al. 2003; Turner et al.

2005; Monaghan et al. 2008). One well-recognized fact is

that the Antarctic Peninsula has been found to be one of

the most rapidly warming locations on Earth. This sig-

nificant warming covers most ofWestAntarctica (Turner

et al. 2005; Thomas et al. 2009; Schneider et al. 2012;

Bromwich et al. 2013), whereas in East Antarctica the

temperature change seems to be not so remarkable

(Steig et al. 2009; Nicolas and Bromwich 2014).

When investigating the possible temperature change in

theAntarctic, one main challenge comes from the paucity

of surface observations. Even though more and more

weather stations have been founded recently, the number

is still small and most of them are located near the coast,

providing little direct information about the continental

interior. Therefore, the very first thingwhen discussing the

temperature changes over the Antarctic is normally to

get a reliable dataset, which can provide us with more in-

formation. Many efforts have been made during the past

years, such as spatial reconstructions made by interpolat-

ing the sparse meteorological records (Steig et al. 2009;

O’Donnell et al. 2011), as well as the temporal recon-

structions made by infilling gaps with global reanalysis

data, automatic weather station (AWS) data, and the sat-

ellite data (Bromwich et al. 2013; Nicolas and Bromwich

2014). Thanks to these efforts, a rough picture of how the

temperatures over Antarctic change during the past de-

cades has been formed, even though the magnitudes are

still inconsistent among different researches.

With these reconstructions, the most widely discussed

topic is whether the Antarctic is undergoing a significant

temperature change (Bromwich et al. 2013; Bunde et al.

2014; Bromwich and Nicolas 2014). Normally, traditional

statisticalmethods such as a Student’s t test or autoregressive

model of first order (AR1) are applied to rule out the pos-

sible temperature-change intervals owing to statistical noises

or autocorrelations (Santer et al. 2000; Bromwich et al.

2013). However, besides these estimations, it is impor-

tant to emphasize that another concept, long-term cli-

mate memory (LTM), should also be taken into account

(Koscielny-Bunde et al. 1998; Malamud and Turcotte

1999; Lennartz andBunde 2011). Long-termmemory, or

long-term persistence (correlations), is not a new con-

cept. Actually, it has been proposed ever since the

middle of the last century, and is thought to be ubiqui-

tous in nature as the Hurst phenomenon (Hurst 1951).

But extensive researches on LTMonly emerged recently

after several well-developed methods were introduced,

suchas thewell-knownwavelet analysis (WA;Arneodoet al.

1995) and detrended fluctuation analysis (DFA; Peng et al.

1994). Compared with traditionally short-term correlations,

long-term memory, as its name implies, means that the au-

tocorrelations can last for a very long time. From a statistical

point of view, if a time series is characterized by LTM, its

autocorrelation function will not decay exponentially with

time lags but rather decays by a power law, as C(n); n2g,

where n is the time lag and C(n) represents the autocorre-

lations (Kantelhardt et al. 2001). Therefore, theoretically the

autocorrelations will never reach zero. In this case, large

values well above the average aremore likely to be followed

by large values, while small values are followed by small

values, andfinally the time series are shapedasmountainand

valley structures (Lennartz and Bunde 2009a; Franzke 2012;

Becker et al. 2014). As shown in Fig. 1, this kind of structure

of course will influence our estimation of significant trends

(Lennartz and Bunde 2009a, 2011) and therefore needs our

special attention. It has been reported thatworldwide surface

temperature records are normally long-term correlated, but

with different strengths at different regions. Over ocean, the

temperatures are found to be characterized by strong LTM;

over coastal regions, the detected LTM becomes a little

weaker; and over the inner continent, the LTMproperties in

surface temperatures are found to be theweakest (Fraedrich

and Blender 2003; Blender and Fraedrich 2003; Eichner

et al. 2003). Up to now, most of the studies had been done

for regions where high-quality observations are available.

However, for Antarctica, few studies have been published

over the past years (Franzke 2010; Bunde et al. 2014).

Considering that LTM is an important factor that needs to

be taken into account when evaluating the significance of

temperature changes, a careful diagnosis as to whether

temperature over Antarctica is long-term correlated or not

is an urgent task. In this study, wewill focus on this so-called

long-term memory for a variety of Antarctic stations cov-

ering the past (mainly) 50 years.

This paper is organized as follows. In section 2, we

make a brief introduction of the data and provide a

detailed discussion of the method we apply. Detailed

diagnostic results on whether the temperature over

Antarctica is long-term correlated or not are shown in

section 3. In section 4, we provide further discussion on

1) how to understand the different LTM behaviors

found in section 3 and 2) how the LTM may affect the

trend evaluation. In section 5, we conclude this paper.

2. Data and methodology

a. Data

In this study, we analyzed monthly temperature re-

cords from 12 stations. The data (except the records from

Byrd station) aremainly downloaded from theReference
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Antarctic Data for Environment Research (READER)

dataset (http://www.antarctica.ac.uk/met/READER/surface/),

while the records from Byrd are obtained from the Byrd

Polar ResearchCentre (http://polarmet.osu.edu/datasets/

Byrd_recon/). We choose these 12 stations according to

two criteria: 1) the observed temperature records should be

relatively long, with few missing points, and 2) the stations

should represent different specific regions of Antarctica,

including coastal regions, the inner continent, and islands,

as well as both East and West Antarctic. Locations of

these 12 stations are shown in Fig. 2, with their altitude

and data length explained in Table 1.

Although only a few stations are available, compared

to model data or reconstructed spatial data the obser-

vational data are more reliable in providing information

on LTM. It should be noted that the data from Byrd are

also a reconstruction by Bromwich et al. (2013), but

considering that the data have been proved to have high

quality, and this is the only long observation over west

Antarctic, we choose these data for our analysis.

Before analysis, we first remove the effect of periodic

annual cycle, as suggested by many previous works, by

ti 5Ti 2 hTii (Koscielny-Bunde et al. 1998); Ti repre-

sents the monthly temperature record, hTii is the annual
cycle calculated from each calendar month, and ti is the

temperature anomalies we use for the analysis.

b. Methodology

To diagnose whether a time series is characterized

by LTM, there are several methods available, including

the autocorrelation analysis, power spectral density (PSD)

analysis (Talkner and Weber 2000), structure function

method (Lovejoy andSchertzer 2012), andwavelet analysis

(Arneodo et al. 1995), as well asmethods based on random

walking theory, such as the rescaled-range (R/S) analysis

(Hurst 1951), fluctuation analysis (FA; Peng et al. 1992),

and the detrended fluctuation analysis (Peng et al. 1994;

Kantelhardt et al. 2001). Among all these methods, cal-

culating autocorrelation coefficients is the most straight-

forwardway, but it suffers from strong finite size effects at

large time scales (Lennartz and Bunde 2009b). PSD has

relatively better statistics than the autocorrelation anal-

ysis, but still needs special estimators [e.g., the Geweke–

Porter-Hudak (GPH) estimator] to guarantee the fitting

accuracy (Geweke and Porter-Hudak 1983; Vyushin and

Kushner 2009). Structure function method, R/S analysis,

and the standard fluctuation analysis FA are all de-

signed for stationary time series, which are claimed not

appropriate for time series with external trends mixed

(Koscielny-Bunde et al. 1998, 2006; Bashan et al. 2008).

Finally, only the WA and DFA can both provide better

statistical outputs and are capable in dealing with non-

stationary data (Arneodo et al. 1995; Kantelhardt et al.

2001). Compared with WA, the algorithm of DFA is

easier for computational purposes; therefore, DFA has

become themost widely usedmethod in analyzing LTM.

In this study, we also choose to use this method.

Suppose we have a record fxig. In DFA, one usually

does not analyze the original record fxig directly, but

considers the cumulated sum (profile) Yj 5�j
i51xi. After

FIG. 1. Time series with different long-termmemory: (a) white noise without LTM (DFA exponent a5 0:5), (b) time series with strong

LTM (DFA exponent a5 0:8), and (c) time series with even stronger LTM (DFA exponent a5 1:0). All the three time series are

artificially generated without any external trends. However, owing to the existence of LTM (see the blue and yellow regions), internal

trends arise in (b) and (c). When estimating trends of a given climatic variable, such as temperature, it is therefore necessary to take the

effect of LTM into account.
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dividing the profile into Ns nonoverlapping segments of

size s (where Ns5 [N/s]), in each segment n, the ‘‘local

trend’’ gYj,n will be polynomially fitted with variable or-

ders. Normally, quadratic polynomial fitting is enough

for the accurate estimation of LTM in temperature re-

cords, so in this study we choose to use the quadratic

polynomial fitting, and the method can be denoted as

DFA-2 (Kantelhardt et al. 2001).

With the local trend fitted in each segment n, one can

determine the ‘‘detrendedwalk’’ as the difference between

the original profile Yj,n and the local trend gYj,n, and

further calculate the variance as

f 2DFA(s, n)[
1

s
�
ns

j5(n21)s11

(Yj,n 2
gYj,n)

2 . (1)

The detrended fluctuation function is thus defined as

FDFA(s)[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns
�
Ns

n51

f 2DFA(s, n)

s
, (2)

where Ns is the number of the windows, and

n5 1, 2, 3, . . . , Ns. If FDFA(s) increases by a power law,

FDFA(s); sa, with the exponent a. 0:5, then the record

fxig is long-term correlated. If a, 0:5, the record fxig is
considered as long-term anticorrelated. As for white

noise with no autocorrelation, a5 0:5. Therefore, the

exponent a is considered as a measurement of LTM

(Kantelhardt et al. 2001).

Note that as DFA is based on the random walking

theory, one may find it not straightforward in describing

FIG. 2. Locations of the 12 stations. Six of them (Halley, Syowa, Mawson, Casey, Scott Base, and Bellingshausen)

are built along the coastline (CS), two of them (Bellingshausen andOrcadas) are located in small islands (IS), and the

last four (South Pole, Vostok, Novolazarevskaya, and Byrd) are classified as Antarctic continental stations (ACS).
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temporal variability of a given record. Therefore, we

further introduce the Fourier transform–based method,

power spectral density analysis, for better understanding.

PSDanalysis is a conventional andwell-knownmethod to

characterize the fractal properties (or LTM) of time se-

ries (Talkner and Weber 2000). To determine the power

spectral density S( f ), one first calculates the autocorre-

lation C(n)5 h[x(t1 n)2 hxi][x(t)2 hxi]i/s2 of the sig-

nal, where n is the time lag and s its variance. WithC(n),

we can get S( f ) by Fourier transform. If the autocorre-

lation shows a scaling behavior (power law) for time

scales larger than n, one can also find a scaling behavior

(power law) of the power spectrum in corresponding

frequency region f , 1/n. For long-term correlated time

series, with increasing frequency f, S( f ) decays by a

power law, S( f ); f2b, where b characterizes the fractal

properties (or LTM) of the considered time series.

Compared with the power-law autocorrelation function

C(n); n2g, it can be derived easily thatb5 12g.When

compared with the DFA exponent a, one can also find a

one-to-one relationship between b and a, as b5 2a2 1

[for detailed discussion, please refer to Talkner and

Weber (2000)]. Since S( f ) describes the variabilities of

given time series on different time scales (or frequen-

cies), its power-law behavior thus indicates the links (or

similarities) among different time scales. Obviously,

with greater slope (in a log–log plot, as shown in Fig. 3b),

bigger bwill be fitted and stronger links will occur. From

b5 2a2 1, by analyzing the same time series, a larger

DFA exponent awill also be found (as shown in Fig. 3a),

which means a stronger LTM (or links from small time

scales to large time scales). Note that for long-term

correlated time series with a. 0:5 and b. 0, higher

energy is allocated to lower frequencies (see Fig. 3b),

which indicates larger-scale structures, or in other

words, more remarkable low-frequency variability of

the considered time series (Yuan and Fu 2014), as shown

in Figs. 1b,c and 3c. We then come back to the question

discussed in the introduction, which is about the ‘‘trend

evaluation’’ in time series with LTM.

We take the temperature anomalies over Byrd station

as an example, and show both the DFA-2 and PSD re-

sults in Fig. 3. From the fitted exponents (a and b), one

can see the relation between them is indeed b5 2a2 1.

From Fig. 3c, low-frequency variability along with some

possible so-called local trends (the gray area) are pre-

sented in the temperature anomalies.

However, compared with DFA-2, there are two main

limitations in PSD analysis. First, PSD is based on the

Fourier transform, which assumes that the time series

analyzed are stationary. If the considered variable is

affected by external trends, or some other nonstationary

factors, biased estimation of b will be obtained. Second,

as shown in Fig. 3b, when fitting the exponent b, large

errors are inevitable due to the enormous variations in

the low frequencies. By using power-law estimators,

such as the Geweke and Porter-Hudak (GPH) semi-

parametric estimator used by Franzke (2010), the un-

certainties can be controlled, but more computational

cost will also be required. Therefore, PSD normally is

not the primary choice for LTM analysis.

In this study, we choose DFA-2. Before showing the

results, we also note that, even for DFA-2, there are still

criticisms that require our attention. First, on small time

scales (normally s, 10), there is an unavoidable finite-

size effect. This defect was first reported in the original

reference (Peng et al. 1994) and emphasized by sub-

sequent articles (Bryce and Sprague 2012; Shao et al.

2012). To avoid being affected by this effect, we only

focus on the scaling range from s5 12 months (1 yr) to

s5 120 months (10 yr) in our study. Second, on large

time scales, the detrending procedure in DFAmay have

variable fidelity for different segment sizes, especially

when unknown nonlinear trends exist in the data of in-

terest (Bryce and Sprague 2012). In this case, biased

DFA exponent amay be obtained. To avoid this risk, we

TABLE 1. Detailed information about the 12 monthly records used in this study, including the names of the stations, classifications, and

their altitudes, beginning years, ending years, and the length.

Station Group Altitude Begin End Length

Halley Coastline station (CS) 30m 1957 2013 57 yr

Syowa 21m 1967 2013 47 yr

Mawson 16m 1955 2013 59 yr

Mirny 30m 1956 2013 58 yr

Casey 42m 1960 2013 54 yr

Scott Base 16m 1958 2008 51 yr

Bellingshausen Island station (IS) 16m 1969 2013 45 yr

Orcadas 6m 1904 2001 98 yr

South Pole Antarctic continental station (ACS) 2835m 1957 2013 57 yr

Vostok 3490m 1958 2013 56 yr

Novolazarevskaya 119m 1962 2013 52 yr

Byrd 1515m 1957 2013 57 yr
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employ Monte Carlo tests to ensure the accuracy of our

judgment. For more discussion of the methods, please

refer to Bryce and Sprague (2012) and Shao et al. (2012).

3. Results

In this study, we focus on the Antarctic region, where

little attention was paid before. In fact, by using climate

model simulated data, Rybski et al. (2008) discussed

LTM properties globally, with Antarctic included. They

found that the 2-m temperatures are long-term corre-

lated in West Antarctica with DFA-2 exponent a

around 0.725, whereas in the east it is less obvious with a

around 0.575 [see Fig. 2a in Rybski et al. (2008)].

However, to tell whether the temperatures over one

region are characterized by LTM or not, only using

model simulated data is not enough since the ability of

climate models to reproduce the correct LTM is still in

question (Vyushin et al. 2004; Bromwich and Nicolas

2014). Recently, with observational data, Franzke (2010)

characterized the LTM properties over eight Antarctic

weather stations using the GPH semiparametric estimator

(Geweke and Porter-Hudak 1983; Vyushin and Kushner

2009). Although the GPH estimator can provide a reliable

power-law fitwith acceptable uncertainties, it is actually an

estimating method based on spectral analysis, which

therefore may lead to biased estimations when external

trends, such as the possible anthropogenic warming trend,

exist. Meanwhile, the eight stations are mainly located

along the coastline and nearby islands, with only one sta-

tion (South Pole) located in the interior of the Antarctic

continent. Therefore, as pointed out by Bromwich and

Nicolas (2014), it is still not clear whether the temper-

atures over Antarctic are significantly long-term corre-

lated. Since LTM is an important factor that needs to be

taken into account when evaluating the significance of

temperature trends over Antarctica, a detailed study on

this issue is very necessary.

According to Fig. 2 and Table 1, one can see that

among the 12 stations in our study, six of them are lo-

cated along the coastline with low altitudes (,50m), two

are located on small islands with even lower altitudes

(,20m), and three are built on the Antarctic continent

with very high altitudes (.1500m). The location of the

FIG. 3. Illustration of DFA-2 and PSD analysis, taking temperature anomalies over Byrd station as an example.

(a) TheDFA-2 result, wherewe find the exponenta5 0:666 0:01, indicates that the temperatures over Byrd should be

characterized by LTM. This exponent agrees, within the error bar, with earlier results by Bunde et al. (2014). (b) The

PSD result, where we find the exponent b5 0:326 0:05. The fitted exponents a and b indeed obey the relation

b5 2a2 1. (c) The temperature anomalies.One can find trends in certain time intervals (the gray area), but it is difficult

to tell whether the trend is induced by external forcing or should be ascribed to the existence of LTM.
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last station, Novolazarevskaya (70.88S, 11.88E), is rela-
tively special. It is located near the ocean, but not di-

rectly at the coastline; it is built on the continent with

relatively high altitude (119m), but not as high as the

other three continental stations. According to Parish

and Bromwich (1987), the station is actually located in a

region where strong terrain-induced winds blow from

the interior Antarctic to the coast. Other forces that

shape the near-surface wind field such as the large-scale

pressure gradients associated with cyclonic storms may

be only of secondary importance. Therefore, climate in

Novolazarevskaya may have continental characteristics.

In this way, the 12 stations are classified into three groups:

coastline stations (CS), island stations (IS), and Antarctic

continental stations (ACS), as shown inTable 1.Although

there are few stations in our study, they have a good

spatial distribution covering different regions of Ant-

arctica (Fig. 2). Therefore, detailed information as to

whether there is LTM over Antarctic can be expected.

To detect LTM, DFA-2 is applied to these 12 tem-

perature records. Considering the possible biases and

uncertainties in the results provided by DFA-2, to en-

sure the accuracy of our detection we also performed a

Monte Carlo significance test. As shown in Fig. 4, we

take the temperature records over the South Pole (ACS)

and Mirny (CS) as examples. From the DFA-2 results

(see Figs. 5a,b), one can see that the a values from both

temperature records are larger than 0.5. For tempera-

tures over the South Pole a5 0:51, while for tempera-

tures over Mirny a5 0:64. However, it is difficult to say

whether the calculated a is significantly higher than 0.5

or, in other words, whether the considered temperature

records are significantly long-term autocorrelated, es-

pecially for the case of the South Pole. Therefore, to

assess the statistical uncertainty of DFA-2, we shuffled

the temperature records over each station for 10 000

times to obtain surrogated data. By shuffling, the tem-

poral correlations are destroyed and LTM removed in

the surrogate data. Therefore, theoretically, the DFA

exponent a calculated from the surrogated data should

be 0.5. However, because of statistical uncertainties and

even possible influences from unknown nonlinear trends,

wide distributions still arose in our calculations (Fig. 4).

Slight differences can be found from the two probability

density distributions (Figs. 4a,b) since the surrogated

data are generated separately from each temperature

records. But the widths of the distributions are roughly

the same due to their similar length (South Pole: 57yr;

FIG. 4.Uncertainties inDFA-2 analysis, based on the temperature anomalies over (a) the South Pole and (b)Mirny

station. In each calculation, we shuffled the temperature anomalies randomly and obtained 10 000 surrogated data

without LTM. Theoretically, a calculated from the surrogated data should be 0.5, but after applying DFA-2 the

probability density function of a has still a broad shape. The red-tailed regions are determined according to the 2:5%

(97:5%) probability threshold, which means that only when the calculated DFA-2 exponent a falls into these regions

[as in the case in (b); see the blue arrow] can one believe that the analyzed time series are significantly different from

white noise.
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Mirny: 58yr). The red-tailed regions are determined ac-

cording to the 2:5% (97:5%) probability threshold, which

means only when the calculated DFA-2 exponent a falls

into these regions, we can state that the analyzed time

series are significantly different from white noise with a

confidence interval of 95%. From Fig. 4, one can see

clearly that the temperature from Mirny is significantly

long-term correlated (see the blue arrow), whereas for

the case of the South Pole there is no remarkable LTM

property. It is worth noting that our result over the

South Pole is different from the result provided by

Franzke (2010), where he found significant LTM in the

temperature records over the South Pole. This in-

consistencymay arise from different analytical methods.

As mentioned before, the method based on spectral den-

sity analysis may bring us biased estimation. Besides the

differentmethods, the differences in data length could also

be responsible for the inconsistence. InFranzke (2010), the

surface air temperature record over the South Pole ranges

from 1957 to 2000, whereas in our study the time series is

extended to 2013. Therefore, it is not surprising to get

different results since different methods are applied to

data with different lengths.

In Fig. 5, we show the results for all the 12 stations.

Figure 5a shows the DFA-2 results of the temperature

records from the coastline stations, while Fig. 5b shows

the DFA-2 results from the island stations andAntarctic

continental stations. Through a Monte Carlo significance

test, uncertainty intervals of 95% probability are provided

in Fig. 5c. One can see that the interval threshold values

are variable among different stations; as mentioned

above, this is due to the different data lengths. An ex-

ample is the case overOrcadas, wherewe have the longest

temperature record (98yr); the statistics are thus the best

with the narrowest uncertainty interval. Note that the

DFA exponent a is fitted on the time scale of 1yr to 10yr.

FIG. 5. (a),(b) DFA-2 results of the 12 monthly records and (c) the corresponding Monte Carlo significance test.

DFA-2 results are shown from coastline stations (CS) in (a), where one can see all the temperatures are characterized

by significant LTM with Hurst exponent a. 0:6, and from island stations (IS, the upper two curves) and Antarctic

continental stations (ACS, the bottom four curves) in (b). The temperatures from IS are characterized by even

stronger LTM, while three out of four continental stations only take on very weak LTM [not significant, see (c)].

Among the continental stations, the temperature over Byrd seems to be an exception with significant LTM. The

uncertainty intervals of 95% probability (the two solid lines) from a Monte Carlo significance test are shown in (c).

For each station, we shuffled the record for 10 000 times and applied DFA-2 to the surrogated data (with LTM

removed). The a values measured from (a) and (b) are marked in (c) as solid circles (coastline), open circles

(continent), and stars (island) with different colors.
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It is easy to see that temperatures from CS are all char-

acterized by significant LTM, with a. 0:6. For the tem-

peratures from IS (the upper two curves in Fig. 5b), the

measured LTM is stronger with a. 0:7. But for the

temperatures over the Antarctic continent (Fig. 5b, bot-

tom four curves), very weak LTM is measured for the

temperature records over the stations of the South Pole,

Vostok, and Novolazarevskaya. From the Monte Carlo

significance test (Fig. 5c), we cannot reject the hypothesis

that the temperatures behave as white noise. According

to the results from the above 11 stations, our classifica-

tion seems to be reasonable in distinguishing stations

with different LTM. However, the Byrd station is an

exception. Although it belongs to ACS with high altitude,

the temperature record still exhibits significant LTM (Figs. 3

and 5b,c). Why do the temperatures over Byrd behave dif-

ferently from other Antarctic continental stations? Is it be-

cause of the reconstruction techniques which may have

influenced the temporal characteristics of the record?Or it

is just a reflection of the different climatic environments

between theWest (where Byrd station is located) andEast

Antarctica? Furthermore, why the temperatures over

different regions of Antarctic behave differently, as shown

in Fig. 5c? To answer these questions, theories on the or-

igin of climate memory are needed, which unfortunately

have not been well established. In the next section, we will

provide a detailed discussion of this issue.

4. Discussion

a. Understanding the different LTM behaviors over
Antarctica

Recently, it has been proposed that one possible origin

of climate memory may come from the slow-varying ef-

fects of the ocean, where the huge heat storage capacity is

thought to be the key factor (Monetti et al. 2003; Yuan

et al. 2013). One can consider the mechanism from the

perspective of stochastic climate processes (Hasselmann

1976; Yuan et al. 2013). That is, the climate regimes are

triggered by small time-scale excitations (or forcing) to

begin to change, but slower response subsystems, such as

the ocean, usually ‘‘remember’’ the forcing first, and then

release the influence slowly on a larger time scale, which

further result in the so-called climate memory. This view

is supported by many former studies. Particularly, it has

been found that temperatures over the oceans normally

have the strongest LTM properties (with DFA exponent

a. 0:8), while over coastal regions the detected LTM

become slightly weaker (with DFA exponent a; 0:65).

Over the inner continent, the LTM properties are found

to be the weakest, sometimes even close to white noise

(with DFA exponent a; 0:5) (Fraedrich and Blender

2003; Blender and Fraedrich 2003; Eichner et al. 2003).

However, what needs to be emphasized is that the large

heat capacity of ocean discussed here can only be consid-

ered as one possible factor. In fact, following the mecha-

nism above, it should be the interactions amongmultiscale

subsystems that determine the existence of climate mem-

ory. As reported in Caballero et al. (2002), by simply

combining several AR1 processes with different correla-

tion scales, one could reproduce the scaling behavior

measured in observational data. This means all the in-

terrelated factors of different time scales should be re-

sponsible, although the effect from ocean may be the

dominant one. Therefore, simply from the interactions

between our considered region and the ocean, one may

make a beforehand guess of whether the temperatures

over this region are characterized by climate memory.

Although there are still debates on whether this kind of

climate memory is long-term or short-term, as in the

results shown in Caballero et al. (2002) and the discus-

sion made byMaraun et al. (2004), one needs the record

of interest to be long enough to check whether the

scaling behavior provided byDFA is indeed due to LTM

or only a temporary behavior of short-term memory,

and the climatic time series at present is unfortunately

not long enough. It is impossible to make a mathemat-

ically rigorous test. Thus, as many previous studies did,

we normally only focus on a certain time span and define

LTM according to the widest scaling range. Although

mathematically not rigorous, this treatment will not af-

fect our further research, as long as the research is lim-

ited to the given time span.

Recall the results reported by Rybski et al. (2008),

where significant LTM is found for the model simulated

2-m temperatures over West Antarctica but not found

over East Antarctica; we prefer to understand the ‘‘ab-

normal’’ behavior at the Byrd station by using the theory

introduced above—that is, to check whether there are

close interactions between the West Antarctica (where

the Byrd station is located) and external slow-varying

systems (ocean). In fact, it has been reported that West

Antarctica is a key region for heat and moisture trans-

port (Cullather et al. 1998). Influenced by ocean varia-

tions from both far away tropical Pacific/Atlantic water

(Ding et al. 2011; Li et al. 2014) and nearby clockwise

propagated eddies, we argue that the seemingly abnor-

mal behavior at the Byrd station is not unexpected.

Furthermore, because of the Transantarctic Mountains,

the influences are limited to West Antarctica. Thus,

these mountains form a clear border line between West

and East Antarctica (Nicolas and Bromwich 2014). In

East Antarctica, however, the continent is only weakly

influenced by the ocean. As a result, temperatures over

this region have high probabilities to behave as white
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noise. As shown in Fig. 5c, indeed no significant LTM

has been measured in the temperatures over the South

Pole, Vostok, and Novolazarevskaya. Therefore, the

different LTM behaviors between temperature for the

Byrd station and that over other continental stations

could be explained as a reflection of the different cli-

matic environments between West and East Antarctica.

Furthermore, as for the stations from coastline and from

islands, it is obviously not surprising to find significant

LTM in temperature, since these stations are all located

in regions where close interactions with the ocean can

be found.

b. Effect of LTM on trend evaluation

Considering that LTM is a relatively new concept that

has not been widely used in trend evaluation, to make

our study (detection of LTM in temperatures over

Antarctica) more valuable, we would like to further

emphasize the importance of LTM by extending our

discussion briefly to the trend significance analysis. We

first start from the analysis of artificial data. Figure 6

shows the distribution of the trends estimated from

three kinds of artificial time series with equal length

(L5 1000), but different LTM (a5 0:5, a5 0:8, and

a5 1:0). The trends calculated here actually are relative

trends x, defined as x5D/st, where D is the total ob-

served temperature increase measured by linear re-

gression, and st is the standard deviation around the

regression line (Lennartz and Bunde 2011). From 10000

samples, we obtain the probability density function of

relative trend x for each kind of artificial time series

(solid circles with different colors). It is clear that for

time series without LTM (a5 0:5), only narrow trend

distribution is found owing to statistical errors, whereas

for time series with LTM (a5 0:8, a5 1:0) much wider

distributions appear. When studying observed time se-

ries, only if the trend falls in the tail region, or in other

words, exceeds the confidence interval [2xQ, xQ] of a given

confidence probability Q, can one say that the observed

trend is significant. Obviously, from Fig. 6, time series

withLTMhavemuchwider confidence intervals. To get xQ,

one straightforward way is to make a numerical test by

applying aMonte Carlo simulation and study artificial time

series with the same length L, the same LTM strength a,

and also the same distribution, as we did in Fig. 6. But this

requires lots of computing time. To make the evaluation

simpler, Lennartz and Bunde (2011) recently developed a

new scaling approach with theoretical formulas derived.

These formulas can be used to simulate the probability

density function of relative trend x, as shown in Fig. 6 (the

lines with different colors, which fit very well with the solid

circles), and further provide an estimation of the confidence

interval [2xQ, xQ] under a given confidence probabilityQ.

Below is the formula for calculating xQ:

xQ(a,L)5ad
LCL

�
w2
L

2
1 ln

�
2

12Q

�
2 ln[erf(wL/

ffiffiffi
2

p
)(

ffiffiffiffiffiffi
2p

p
wL)1 2e2w2

L/2]

�
, (3)

where CL ’C(0) 1C(1) ln(L), C(0) ’ 2:04, C(1) ’20:2,

dL ’ d(0) 1 d(1) ln(L), d(0) ’ 20:57, d(1) ’ 0:61, w2
L ’

w(0) 1w(1) ln(L), w(0) ’26:32, and w(1) ’ 1:41. Also,

L is the length of the record, a is the DFA-2 exponent,

Q is the confidence probability, and erf(z) is the error

function. With this formula, we can get the confidence in-

terval xQ by simply inputting the data lengthL, the DFA-2

exponent a, and the confidence probability Q. If the ob-

served relative trend x exceeds the interval [2xQ, xQ], a

significant trend can be detected. Conversely, if we input

the observed relative trend x, data lengthL, and theDFA-2

exponent a into Eq. (3), the trend significance S (Q) could

also be derived from Eq. (3). Although the formulas are

derived by studying Gaussian distributed records, it has

been discussed that they are applicable not only for

Gaussian distributed time series, but also for time series

with non-Gaussian distribution, as long as they do not ex-

hibit fat tails (Lennartz and Bunde 2011). Therefore, we

can apply them to the temperature records overAntarctica.

For more details of this method, we refer to Lennartz and

Bunde (2011).

FIG. 6. Trend distribution of time series with equal length

(L5 1000), but different LTM (a5 0:5, red; a5 0:8, blue; and

a5 1:0, dark cyan). The solid circles are the numerical results es-

timated from artificially generated time series (10 000 samples for

each a), while the lines are the results calculated from the formulas

derived by Lennartz and Bunde (2011). For time series without

LTM (a5 0:5), narrow width is found, which may be mainly due to

statistical errors. While for time series with LTM (a. 0:5), wider

distribution is found. The stronger LTM is, the wider a distribution

is found. The lines fit the numerical results very well.
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InTable 2,we show the confidence interval [2x0:95, x0:95]

and the trend significance S of the temperatures over all

the 12 stations. Besides the results calculated fromEq. (3),

results from conventional methods based on the assump-

tion of AR1 process and even white noise (Santer et al.

2000; Tamazian et al. 2015) are also presented in Table 2.

One can see that after taking LTM into account, the

trend evaluation becomes more rigorous, especially for

the ones with stronger LTM. For instance, in the

Bellingshausen station, if we assume the temperature

records as white noise, then the 0.788C temperature in-

crease from 1969 to 2013 is significant with S. 99%. If

we assume the temperature records as AR1 processes,

then the temperature increase is significant with S larger

than 95%, but smaller than 99%. However, if we take

the strong LTM (a5 0:72) into account, the temperature

increase is not significant (S5 71:5%). By using Eq. (3),

we find that only 3 (out of 12) stations have shown signifi-

cant warming trends. If we assume the temperature records

showAR1 processes (white noise), 5 out of 12 (6 out of 12)

stations will be picked out. Since trend evaluation is not

our main focal point, we do not include a detailed discus-

sion on the reasons why different stations have different

trend significance. But from the results shown in Table 2,

one can find that 1) the temperatures over most Antarctic

stations do not show any significant trends, even for the

AR1 or white noise null models, which is in line with the

studies by Turner et al. (2005); and 2) LTM indeed is a

factor that can affect the estimation of trend significance.

If a time series is characterized by LTM, we cannot simply

assume it as AR1 processes or white noise. In the end, we

need to note that a trendwith S, 95%does not need to be

of pure natural origin, while a trend with S. 95% does

not need to be totally ‘‘anthropogenic’’ either. The

trend significance S is actually a measurement that can

be used to quantify the probability of an observed trend

being affected by external factors. Obviously, from our

results, this probability is not high for most of the

Antarctic stations.

5. Conclusions

In this study, surface air temperature records of 12

stations from different regions of Antarctica are analyzed

by means of DFA. After the Monte Carlo significance

test, different LTM behaviors are found. Temperatures

observed from coastlines and temperatures observed from

islands are all characterized by significant LTM, while

temperatures records observed from continental sta-

tions behave differently. In East Antarctica, continen-

tal temperatures from the South Pole, Vostok, and

Novolazarevskayz behave closer to white noise, whereas

in West Antarctica significant LTM is found in the Byrd

station. These different results may be explained by

studying the interactions between local weather system

and external slow-varying systems (ocean); therefore, we

argue that the difference can be considered as a reflection

of the different climatic environments between the West

and East Antarctica. Since according to the discussion

above (Fig. 6 and Table 2) the existence of LTM can in-

crease the uncertainty of trend evaluation, when studying

the warming trend overAntarctica special attention should

be paid to the coastline, islands, and West Antarctica,

where significant LTM is detected in this study.

After submitting this work, we learned of a closely

related study byLudescher et al. (2015) inwhich, by using

DFA-2, similar exponents for the Antarctic records (not

exactly the same 12 stations as we use) have been ob-

tained. Their trend analysis shows that only 1 station (out

of 13) has a significant warming trend (S. 95%) if the

TABLE 2. Trend evaluation of the 12 monthly records over Antarctica. Data length L, temperature increase D, standard deviation st

around the trend line, relative trend x, and the DFA-2 exponent a are listed in the table. To evaluate the trend, we show both the

confidence interval xQ (Q5 0:95) and the significance level S. Besides the results with LTM taken into account (xLTM0:95 , SLTM), evaluations

from conventional methods based on the assumption of AR1 processes and white noise are also listed in the table, as xAR
0:95, S

AR, xW0:95, and

SW . A significance level S larger than 95% is marked by one asterisk (*) and S larger than 99% is marked by two (**).

Station L D(8C) st x a xLTM0:95 SLTM xAR
0:95 SAR xW0:95 SW

Halley 684 20.51 2.65 20.19 0.61 60.50 52.2% 60.29 80.7% 60.26 85.0%

Syowa 564 20.10 1.85 20.05 0.68 60.77 ’ 0 60.37 22.6% 60.29 28.7%

Mawson 708 20.14 1.94 20.07 0.62 60.52 ’ 0 60.29 38.3% 60.26 43.4%

Mirny 691 0.37 2.00 0.19 0.64 60.58 39.3% 60.30 77.8% 60.26 84.2%

Casey 648 0.32 2.13 0.15 0.68 60.74 10.5% 60.33 63.6% 60.27 73.5%

Scott Base 610 0.87 2.68 0.33 0.61 60.52 80.5% 60.32 95.1%* 60.28 98.0%*

Bellingshausen 540 0.78 1.61 0.48 0.72 60.95 71.5% 60.45 96.3%* 60.29 99.9%**

Orcadas 1176 1.90 2.25 0.84 0.73 60.76 96.8%* 60.30 99.9%** 60.20 99.9%**

South Pole 684 0.17 2.44 0.07 0.51 60.27 24.3% 60.28 37.1% 60.26 40.1%

Vostok 616 0.70 2.43 0.29 0.54 60.35 90.8% 60.33 91.2% 60.27 96.1%*

Novolazarevskaya 623 0.79 1.78 0.45 0.54 60.34 98.3%* 60.32 99.3%** 60.27 99.9%**

Byrd 684 2.02 3.08 0.65 0.66 60.65 95.1%* 60.31 99.9%** 60.26 99.9%**
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LTM is taken into account, whereas 4 (out of 13) stations

will be picked out with significant warming trend if AR1

processes are assumed. The results are in line with ours

and therefore emphasize the importance of LTM in trend

evaluation.
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