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Abstract Under condition of four potential fields, equations of motion and fluctuations in imaginary time are utilized
to analytically derive the basic and fluctuating periodic instantons. It is shown that the basic instantons satisfy the elliptic
or simple pendulum equations and their solutions are Jacobi elliptic functions, and fluctuating periodic instantons satisfy
the Lamé equation and their solutions are Lamé functions. These results indicate that there exists the common solution
family for different potential fields which are called the super-symmetry family.
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1 Introduction

The research fruits of quantum physics possess both
important theoretical and experimental senses. Espe-
cially, the quantum tunneling where motion of particle
can tunnel through the potential barrier has become the
baseline of modern natural sciences and new technologies.
In the eighties of the 20th century, the researches of quan-
tum tunneling have been started!!=2! and Chinese scien-
tists Liang et al[®~'2 have also made great progress in
this field. In this paper, the analytical periodic intantons
in quantum tunneling are derived normally.

Assuming that the potential and total energies of a
particle are V' and FE, respectively. When V < FE, there
exists certain orbit for the classical particle. However,
when E < V| the classical particle is unable to tunnel
through the potential fields. For this reason, the imagi-
nary time

T=it (i=v-1) (1)

is introduced. Such that the classical particle becomes
the pseudo-particle, which can tunnel through the poten-
tial fields and brings about the quantum tunneling.

Using the imaginary time, the equation of motion per
unit mass is given by

d*¢ /
Y _ 2
= V9, @
and then integrating equation (2) yields
1/dgyN2
5(@) -V(¢)=-F, (3)

where ¢ is the displacement or wave function for the par-
ticle.

From Eq. (3), we see that 0 < E < V and then the
potential field of pseudo-particle can be taken as —V. The
solution of Eq. (3) is called the instanton configuration.

Considering that ¢ and 1 are ground and fluctuating
states for the particle, respectively, then the fluctuating

equation may be written as
1 d?

sl 15+ VI@)]v =, (4)

where w is the circular frequency if fluctuation with w? >
0. If w? < 0, it implies that the ground state is unstable.

2 Basic and Fluctuating Periodic Instanton
in Quantum Tunneling

Below, we will discuss two cases of potential field in
details.

2.1 Dowuble-Well Potential Field

The double-well potential field or ¢* potential field is
given by

2 4
V() = 55 (& - ) = b (8 - £5) + Vo
(VO - %w%az) , (5)

which is shown in Fig. 1 and wg and a are two positive
constants. Figure 1 shows that the potential field con-
tains one potential barrier and two potential wells.

From Fig. 1, we can see that there are three equilib-
rium states which make V’(¢) = 0 such that

¢8:O7 ¢>1k:_a7 d);:a’ (6)
Since

Vo) = —28(6-2). V(o) = —23(1-25) . (7

So ¢ = 0 is the maximum point which is unstable in
the potential field, the maximum value is Vo = (1/2)w3a?,
which is the top height of potential barrier and taken to be
the potential barrier height. While ¢] = —a and ¢5 = a
are the minimum points, which are stable in the potential

field, the minimum value is zero.

3¢
S a?
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Vi to ¢5. & = —a at /2/(1+mPwo(T — 19) = —K(m)
() and 7 = 71 corresponds to ¢7 = —a. ¢ = a at

Vo = wgu2/2

—a(¢}) 0 a(e3) ¢

Fig. 1 Schematic plot of double-well potential field.

(i) Basic Periodic Instanton
Substituting Eq. (5) into Eq. (3), we have

do 2 2
(Tf) = (—2E 4 wia®) — 2wip® + %(ﬁ‘l . (8)
Notice that one solution to nonlinear elliptic equation!!3]
dy\2 2 42 2,2 2 K2m? 4
—= ) =k*A°—(1
(52) =+ (L+m)k%y? + 5y
ko 2\( 42 2,2
= A7 —y)(A7 —m7y), (9)

is given by

y = Asn(k(z — x0),m), (10)

where sn (k(x — x0), m) is the Jacobi elliptic sine function
with its modulus m (0 < m < 1), and z( is an arbitrary
constant.

Comparing Eq. (8) with Eq. (9) leads to

2 k
k=\/——=wo, A::i:am,
14+ m?2 wo

1 m2)
1+ m2)/’
and one solution to Eq. (8) is

2 2
o= i@masn(ﬂwoﬁ - To)»m) » (12)

with an arbitrary constant 79. Equation (12) is the gen-
eral periodic solution of quantum tunneling in double-well
potential field. When the right hand of Eq. (12) takes the
positive sign, then its figure is shown in Fig. 2 as the thin
solid line. Equation (12) is called as the basic periodic
instanton comparing to fluctuation. Since the period of
sn(z, m) is 4K (m), then the period of basic periodic in-
stanton is given by

E =V, (b (11)

14+ m?2 K(m)
T=4\———-, 13
5w (13)
with the complete elliptic integral of the first kind
Oy — (1)
K(m)= / —=d 14
0 1 —m2sin?yp

The solid thin line in Fig. 2 indicates ¢ = 0 at

V2/(1+m?)wo(r — 19) = 0, and 7 = 7p corresponds

V2/(1+m?)wo(t — 10) = K(m) and 7 = 75 corresponds
to ¢35 = a. Thus the pseudo-particle starts from 7; and
tunnels through the potential barrier at 7y, it will come
close to the potential barrier height with increasing m and
reaches the potential barrier height at m = 1, at last it
completes one tunneling at 5. In fact the pseudo-particle
is reciprocating oscillation between 7y, 79, and 7s.

K. K 0 K 2K 0

Fig. 2 Schematic plot of basic periodic instanton (thin
solid line) and basic instanton (thick solid line ) in double-
well potential field.

Now, we illustrate two marginal cases for m = 0 and
m = 1.

(a) When m = 0, then b = 1 and E = Vj, the total
energy reaches the maximum, and the potential barrier
height Eq. (12) is degenerated into

¢=0. (15)
This implies that ¢ is zero solution, and the pseudo-
particle is located to the unstable potential barrier height
where ¢ = 0 is known as the sphaleron.
(b) When m = 1, then b = 0 and E = 0, the total
energy reaches the minimum and Eq. (12) is degenerated
into

¢ = tatanhwy (1 — 70) , (16)

which is the kink solution known as topological soliton.
When the right hand of Eq. (16) takes the positive sign,
then its figure is shown in Fig. 2 in thick solid line, where
we can see that 7 — —o00,¢p — —a; T — +00,¢ — a.
Since K(m) — 400 at m = 1, then the topological soliton
is the periodic instanton with infinite period, and it is also
called the basic instanton.

As the physics is concerned, we must give the following
two statements:

(a) Since 0 < E <V, V =0at ¢* = +a certainly leads
to E =0 at ¢* = %a, which is known as the macroscopic
quantum states. And for basic instanton represented by
Eq. (16), there is E = 0 as well, so there exists degener-
ated states to £ = 0.

(b) The topological soliton links up smoothly the two
macroscopic quantum states ¢7 = —a and ¢5 = a. Such
that they interfere each other and split up the energy level.
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In mathematics, the topological soliton is called also the
heteroclinic orbit. However, in physics, it is called the
connection of quantum tunneling, which is also called the
tunnel effect.

(ii) Fluctuating Periodic Instanton

In order to solve the fluctuating equation (4), it is con-
venient to introduce the dimensionless variable

2
=V el )

which is the phase function. So the basic period instanton
(12) can be rewritten as

2
¢ =t4/ 1JrWmonsn(@, m),

by means of Eq. (17), the fluctuating equation (4) in
double-well potential field reduces to

1 d?

(17)

(18)

1 2 1 2y, ,2
sl Vo= e @)

Substituting V" (¢) in Egs. (7) and (18) into Eq. (19)
yields

*y A —6m*sn*0)y =0 20
I (A —6m”sn0)y =0, (20)
with )
_ 2 w”
)\f(1+m)<1+w8). (21)
. . . ’ . [14716]
Equation (20) is just a Lamé equation
d?y 2
+ A =11+ Dsn°z)y =0, (22)

da?
for the case of [ = 2. According to the theory of Lamé
equation (see Appendix), we find that the modes and peri-
odic solutions known as the fluctuating periodic instantons
of Eq. (20) are given by
(a) A =1+m? ie. (1+m?)(1+w?/wd) =1+ m? and
then

w? =0, g = Cocnfdné , (23)

where cnf and dnf are the Jacobi elliptic cosine function
and Jacobi elliptic function of the third kind, respectively,
and Cy is an arbitrary constant.

Taking m = 0 and m = 1, then Eq. (23) degenerates

(zero mode),

to
w2 =0, = Cycosh, (24)
w?=0, 1= Cosech®d. (25)
(b) A =1+4m? ie. (1 +m?)(1+w?/wd) =1+ 4m?

and then
3m

2 _
YT T me
11 = Crsnfdnf

where C] is an arbitrary constant.
When m = 0 and m = 1, then Eq. (26) degenerates to
w?=0, 1 = Cysind, (27)
2 3

_ 2
w —iwo,

2
w?, (positive and zero modes) ,

(26)

11 = Crtanhfsechd . (28)

() A=4+m? ie. (1+m?)(1+w?/wi) =4+m? and
then
s 3
1 4+m?
where Cs is an arbitrary constant.
When m = 0 and m = 1, then Eq. (29) degenerates to

w2, (positive mode), 1y = Cysnfcnd, (29)

w? = 3w(2] , Yo = Chcosfsing, (m=0),
w? = gwg , 2 = Cotanhfisechd, (m=1). (31)

(d) A=2[(1+m?) £vV1 —m2+mi], ie (1+m?)(1+
w?/w2) = 2[(1+m?) £ V1 —m?2 +m?] and then

2M
w? = w? (1 + T ), (all kinds of modes),
m
1+m?>F M
3 = C3 {sn29 _drm ¥ M) 32 )} ) (32)

with M = /1 —m?2 +m* and where C3 is an arbitrary
constant. When m = 0 and m = 1, then Eq. (32)

W= (1£2)wd, s =Cs (sin20 - %) . (m=0), (33)
W= (1£1)wd, ¥y = Cy [tanh29—%(2:F1)}, (m = 1).(34)

2.2 Sine-Gordon Potential Field
The sine-Gordon potential field is given by

2 1) 2
V(p) = %(1 + cospd) = ‘/()COSQ%, (Vo = %) , (35)

which is plotted in Fig. 3, and wg and p are positive con-
stants. Similar to Fig. 1, there are one potential barrier
and two potential wells in —(7 +¢) < pup < (m+¢),(0 <
e<1).

¢

0
—7/ (7)) (¢7) T/n(93)
Fig. 3 Schematic plot of sine-Gordon potential field.

There are three equilibrium states which make

* * ™ * o
Vl(d)):Oa d)():Ov ¢1:_;7 ¢2:; (36)
Since
2
wy .
V'(¢) = *;gsmmb, V"(¢) = —wicosue, (37)
there ¢f = 0 is the maximum point, which is unsta-

ble in the potential field, and the maximum value is
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Vo = 2w?/u?, which is the top height of potential bar-
rier and is known as the potential barrier height. And
¢7 = —7/u and ¢35 = w/p are the minimum points, which
are stable in the potential field, the minimum value is zero.

(i) Basic Periodic Instanton

Substituting Eq. (35) in Eq. (3), we have Substituting
Eq. (5) into Eq. (3), we have

() =530 -7) -],
dr 12 Vo 2

which is the equation of simple pendulum motion, its nor-
mal form['3] is given by

(38)

dy\2 2] 2 . 2Y

(dx) =4k [m — sin 2}, (39)

one of its solution is
sin% = tmsn(k(z — xg), m) . (40)

Comparing Eq. (38) with Eq. (39) yields

k=22, E=(1-m)V, (41)

1

and then the solution to Eq. (38) is

Sin%¢ = tmsn(wo(T — 70), M), (42)

where 7 is an arbitrary constant. Equation (42) is the
general periodic solution known as the basic periodic in-
stanton of quantum tunneling in sine-Gordon potential
field. When the right hand of Eq. (42) takes the positive
sign, then its figure is shown in Fig. 4 in thin solid line.
The periodic of basic periodic instanton is given by

4K (m)

T=—-—+. 43

L ®
sin(u/2)
__1 ______________ -
(r=m71)
—2 —K 0 K 2K
(rl=70) (r=m2)
e . -1

Fig. 4 Schematic plot of basic periodic instanton (thin
solid line) and basic instanton (thick solid line).

Similar to the case for double-well potential field there
exist also quantum tunneling and reciprocating oscilla-
tion for the pseudo-particle in sine-Gordon potential field.
Now, we illustrate two marginal cases for m = 0 and
m = 1.

(a) When m = 0 then E =V}, the total energy reaches
the maximum, Eq. (42) is degenerated into

6=0, (~(m+e)<po<(rte),  (44)

which is just the sphaleron.

(b) When m =1 then E = 0, the total energy reaches
the minimum, Eq. (42) is degenerated into the following
basic instanton

po

sin7 = +tanhwy (T — 79), (45)

which is just the topological soliton and it links up
smoothly ¢f = —7/p and ¢35 = 7/u, so it is also called
heteroclinic orbit. When the right hand of Eq. (45) takes
the positive sign, detailed plot can be found in Fig. 4 in
thick solid line.

Similar to the case for double-well potential field there
also exist the degenerated states to £ = 0 and the con-
nection of quantum tunneling in the sine-Gordon potential
field.

(ii) Fluctuating Periodic Instanton

In order to solve the fluctuating equation (4), we in-
troduce the following dimensionless variable

(46)

so the basic periodic instanton (42) can be rewritten as

0= WQ(T - ’7'0) s
sin% = +msn(0,m). (47)

By means of Eq. (46), the fluctuating equation (4) in
sine-Gordon potential field reduces to

1 d? 1_, w?
3 —@‘wagv (¢)¢*wfg¢~ (48)

Substituting V" (¢) in Egs. (37) and (47) into Eq. (48)
yields

ﬂ + (A —2m?sn?0)y =0 (49)
de? ’
with )
2w
A=1+—.
+ " (50)

Equation (49) is just a Lamé equation (22) for the case
of [ = 1. According to the theory of Lamé equation (see
Appendix), we obtain the modes and fluctuating periodic
instanton of Eq. (49) given by

(a) A=11ie. 1+ 2w?/w? =1 and then

w?=0, o = Cpcnf . (51)

(b) A =1+m?ie 1+ 2w?/w2 =1+ m? and then
2

(zero mode) ,

w? = %wg ,  (positive and zero modes),
1/11 = Clsn07 (52)
() A=m?ie. 1+ 2w?/wi =m? and then
1— 2
w? =— 2m wi, (negative and zero modes),
Yo = Codnf . (53)

3 Basic Periodic Bounce and Fluctuating
Periodic Instanton in Quantum Tunneling
In this section, we will discuss still two cases of poten-
tial fields in details.
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3.1 Double-Barrier Potential Field

The double-barrier potential field is also a kind of ¢*
potential field, and it is given by

2
V(6) = 216"~ (8 - ) = 22 (8~ 5r0t),

2a2?

(VO = %w8a2> ) (54)
which is plotted in Fig. 5, and wy and a are positive con-
stants. Figure 5 shows that there are two potential barri-
ers and a potential well.

Comparing Fig. 5 with Fig. 1, we can see that Fig. 5
is the transposition of Fig. 1, and V(¢) > 0 requires that

—V2a < ¢ < V2a.

Vi(g)

Vo = w2a?/2

721/%/ —a 0 a \21/2,1

Fig. 5 Schematic plot of double-barrier potential field.

From Fig. 5, there are three equilibrium states

¢8:07 ¢>{:_a7 ¢>2k:a7 (55)
which is identical to Eq. (6) for double-well potential field.
However, since

1 3
VI(6) =2 (6——0%), V"(6) = 23 (1 26%) ,(56)
a a
the sign is different from Eq. (7), so ¢§ is stable and ¢}
and ¢35 are unstable. The maximum and minimum values
are V; and zero, respectively. Besides, in Fig. 5 there are

o =—V2a, ¢5=V2a, (57)
and their potential energies are zeros, which are known as
the reverser, and its explanation will be presented next.

(i) Basic Periodic Instanton

Substituting Eq. (54) into Eq. (3) yields

(%
dr

and notice that one solution of nonlinear -elliptic
equationt?]

2 Ld2
) = 2B+ 228" - 0ot (58)

k2

dyN? o0 2y2,2 R4
(dx) = KA 4+ (1+n?)k Y
K> o oavia2 oo
= Ryt ) (59)
is given by
y = Adn(k(z — z9),n) (60)

Comparing Eq. (58) with Eq. (59) leads to

[ 2 ka
k=4 —— A=+—
1+ 02" wp

1 m2)
 14+m?
and one solution to Eq. (58) is

2 2
4= i% - n@adw1 (o)), (62

where 7p is an arbitrary constant. Equation (62) is the

general periodic solution of quantum tunneling in double-

barrier potential field with modulus n'(n' = V1 —n?).

Here n distinguishes from m in double-well potential field,
9 4m

and their relation is given by
2o Am (ﬂf
(1+m)2’ 1+m/ °
Equation (62) is also the basic periodic instanton of

quantum tunneling in double-barrier potential field with
the period

E=0V, (b (61)

(63)

1+ n2 K(n)
2 wWo '

When the right hand of Eq. (62) takes the positive sign,
and then its corresponding figure is plotted in thin solid
line in Fig. 6, from which we can see ¢ = \/2/(1+ n'?)a
and ¢ = v2a at ¢ = \/2/(1 +n2)wo(T — 79) = 0 when
n = 1, so 7 = 7y corresponds to (;33 =V2a ¢ =0
at ¢ = /2/(1+n?)wo(t — 1) = —K(n), sot = 7
corresponds to ¢ = 0. Thus the pseudo-particle starts
from 7 and tunnels through the potential barrier at 79, it
will come close to d;; = v/2a with increasing n and reach
q3’2‘ = \/2a at n = 1, later it returns to beginning point.
So 79 and g?); = V/2a known as the turning points and
reverser, respectively, while the basic periodic instanton
represented by Eq. (62) is known as the basic periodic
bounce.

T=2 (64)

0

—K (r=m) 0(r =70) K (r=m2)

Fig. 6 Schematic plot of basic bounce(thin solid line)
and basic bounce (thick solid line) in double-barrier po-
tential field.

So far as the whole double-barrier potential field, the
pseudo-particle begins from one turning point and tunnels
through two potential barriers and finally reaches another
turning point.
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Now, we will illustrate the marginal cases for n = 0  called the decay of quantum tunneling, which is different

and n = 1. from the conclusion in double-well potential field.

(a) when n = 0, then n’ = 1 and F = Vj, the total (ii) Fluctuating Period Instanton
energy reaches its maximum, the potential barrier height In order to solve the fluctuating equation, it is conve-
and Eq. (62) is degenerated into nient to introduce the dimensionless variable

=+ 65 2
¢ = *a, (65) 0 /7/2%“770)’ (67)
which is the sphaleron. 1+n

(b) when n = 1, then n’ = 0 and E = 0, the total then the basic periodic bounce (62) can be rewritten as
energy reaches its minimum and Eq. (62) is degenerated 5
into ¢ ==+ ——padn(¥,n). (68)
¢ = +V2asechv/ 2wy (T — 10), (66) 1+n

which is non-topological soliton known as the basic bounce
with infinite period. Its figure is shown in thick solid line

By means of Eq. (67), the fluctuating equation (4) in
double-barrier potential field reduces to

in Fig. 6, when the right hand of Eq. (66) takes the posi- 1 [ _ diz 1+n"” V”(¢)} Y= Mw (69)
tive sign. 2 dg? wg wg
g
When physics is concerned, two points must be noted. Substituting V() in Egs. (56) and (62) into Eq. (69)
(a) Singe 0< E<V,V=0at¢=+v2a must lead to yields
E =0 at ¢ = £1/2a, which may be known as the macro- d2
scopic quantum states. For basic bounce represented by diﬂlf + (A —6n%sn?0)y =0, (70)
Eq. (66), we also have E' = 0. So there exist the degener- )
ated states to £/ = 0, which is similar to the conclusion in with 9
the double-well potential field. A=(2-n?)5 + (4+n2). (71)
(b) For the non-topological soliton Eq. (66) the “o
pseudo-particle begins from 7 = 79 and tunnels through The form of Lamé equation (70) is the same as Eq. (20)

the potential barrier and returns to 7 = 79. In mathe-  only is replaced m by n. Thus we obtain the modes and
matics, the non-topological soliton is also called the ho-  fluctuating periodic instantons as

moclinic orbit. Notice that in former two potential fields, (a) A=4+n? ie. (2—n?)w?/wd + (4+n?) =4 +n?
the pseudo-particle enters into the potential well after it 454 then
tunnels through the potential barrier. However, in the 9
case of double-barrier potential field the pseudo-particle w” =0, (zeromode), o= Cosnfend. (72)
is able to enter into the region of V' < 0 and it makes the (b) A=1+n2 ie (2—n?)w?/wd + (4+n?) =1+n?
decay of ground states and energy level take place, it is | and then

w? = fﬁw?}, (negative mode), ¢y = Cicnfdnd. (73)

() A=1+4n? ie. (2 —n?)w?/wd + (4 +n?) =1+ 4n? and then
oo 0= (negative and d = Cysnfdnd 74
=——5 2 Wi, (negative and zero mo es), o = Casnfdnd, (74)
where Cs is an arbitrary constant.

(d) A=2[(1+n?) £ V1 —n2+ni] ie (2—nH)w?/wd + (4 +n?) =2[(1+n?) £ V1 —n2+ni and then

2N 1 2T N
w? = —w? (1 T m) , (all kinds of modes), w3 =Cs [sn20 — % , (75)
with N = /1 —n? + nt. | shows there are one potential barrier and one potential
well.
3.2 Sub-Stationary State Potential Field From Fig. 7, we see that the equilibrium states have
The sub-stationary state potential field or ¢3 potential y . 2
field is given by ¢ =0, ¢1= 3% (77)
w? 1] 27V, Since
V(g) = F1¢” - 20° = =50 (a—9), , s e )
22 3 ) 4a V() =wod — Bo~, V"(¢) =ws — 260, (78)
(a — 3wp . Vo= LOQ) ’ (76) then ¢§ is stable and the minimum value is zero and ¢7 is
20 63 unstable and the maximum value is V. Besides, in Fig. 7,

which is plotted in Fig. 7 and wy and § are two positive  we have .
constants. V(¢) > 0 requires that —oo < ¢ < a. Figure 7 o=a, (79)
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which is the reverser with the zero potential energy.

V(¢)
Vo = 2w2a?/27

0 24/3 \@

Fig. 7 Schematic plot of sub-stationary state potential
field.

(i) Basic Periodic Instanton
Substituting Eq. (76) into Eq. (3) leads to

den2 (
(F) = —2E+uier -0
25 3w? 3E
e = B CU
Setting
3 3w0 2 3E_
-5t 5 =0 (81)

to take three real roots: ¢1, g2 and ¢3 with ¢1 > @2 > ¢3

| and then we have

w3 3E
$1+ g2+ P3 = 7? =a, Q192+ P23+ @301 =0, 10203 = 5 (82)
from which we have
2 2 2 2 2 2
“o | @ “o | W n “o | Yo am
= 26—&—600504 P = 25—&—6005(04—1—3), ¢3 = 26—&—6005(04—1—3), (83)
; 1
where o satisfies | ay = a(cosa _ —sina) : (91)
g1 128°B_ . 2B y V3
cosoa = 1= ws Vo (84) so Eq. (88) can be written as
So Eq. (80) can be rewritten as ¢ = dg + m*aren®(wi (1 — 19),m), (92)
do\2 26 which is the basic periodic bounce in sub-stationary state
(dT) o _7(¢ 01)(6 = $2)(& = d3) . (85) potential field with period
Notice that one solution to mnonlinear elliptic T_ 2K (m) (93)
equation'?! oW
dy _B Details of Eq. (92) is plotted in thin solid line in Fig. 8,
(dx) =y —y2)(y —v3), where we can see that ¢ = (Pl =a at wi(r — 1) = 0,
(B> 0,01 > > ys) (86) so 7 = 719 corresponds to ¢ = a. ¢ = ¢ = 0 at

is given by

By — y3)

1 (a:—a:o),m),

y=y2+ (1 — yz)cnz(

( 2_ N~ y2)
m .
Y1—Y3
Comparing Eq. (85) with Eq. (86) leads to one solution
to Eq. (85)

(87)

¢ =2+ (¢1 — ¢2)cn2( B(¢16 ¢2)

where 7( is an arbitrary constant, and
2 91— 92
$1— ¢3
With the help of Eq. (83) and ¢1 —¢3 = (
cos(a + 47/3)], we have

ﬁ(¢16 ¢3) — wlzzo\/w, (90)

and then

¢1—¢3=6L

2
1 2
3 =a1, ¢1—¢2=m

(r=0).m), (88)

(89)

w8/ 8)lcosa—

(p1 — ¢3) =

TTL(],l7

wi(T — 719) = £K(m), so T = 71 corresponds to ¢f = 0.
Then 7y is the turning point, QAS = a is the reverser.
Hence, the pseudo-particle starts from 7 = 71 and tun-
nels through the potential barrier at 7 = 7y, it is close to
d) = a as increasing of m and reaches qS =agatm=1,
later it returns to 7 = 71. That is to say, here there also
exists a periodic bounce.

Now, we illustrate two marginal cases of m = 0 and
m = 1.

(a) When m = 0, then ¢1 = ¢2 from Eq. (89) and by
means of Egs. (83), (84), (90), and (91) we have

1
a=—g, cosa =g, cosda= —1, w; = %, ay = a,(94)
2 2
wg 2 wp
1 = @2 5 3" ®3 3 30 0, (95)

which indicates that the total energy reaches the maxi-
mum, the potential barrier height, in —e < ¢ < a (0 <
¢ < 1) when m = 0. In this case, Eq. (92) is degenerated
into

wg 2

$1=¢2=¢3 = 3 =30, (96)

which is the sphaleron.
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(b) When m = 1, then ¢2 = ¢35 from Eq. (89) and by

means of Eqgs. (83), (84), (90), and (91) we have

a=0, cosa =1, cos3a=1, wi = %, ar=a, (97)
2w}

¢1:37502a7 ¢2:¢3207 EZO? (98)

which indicates that the total energy reaches the mini-
mum in —oo < ¢ <a—e (0 <e <1) when m = 1. In this
case, Eq. (92) is degenerated into

¢ = asech?2 5 (T —10), (99)

which is the basic bounce known also as the non-
topological soliton or homoclinic orbit. Its details are
plotted in thick solid line in Fig. 8.

4(0)

a

,A’ (r=m1)

O(r=m0)K (r=m1) 0

Fig. 8 Schematic plot of basic periodic bounce (thin
solid line) and basic bounce (thick solid line) in sub-
stationary state potential field.

Similar to the case of double-barrier potential field,
there also exist the degenerated states to £ = 0 and the
decay of quantum tunneling in the sub-stationary state
potential field.

and then the periodic bounce (92) can be rewritten as

¢=¢1— (101)

By means of Eq. (100), the fluctuating equation (4) in
sub-stationary state potential field reduces to

1 d? ” B w?
*V (9)|¥ = EW

Substituting V" (¢) in Eq. (78) into Eq. (102) yields

m2aysn?(0,m).

5 d02 (102)

d*) + (A — 12m?sn?0)p = 0 (103)
462 ’
with )
2w? W
A="F - +—= 104
e (104)

Obviously, ¢; is related to m. Cons1dering that when
m = 0 then ¢; = W3/B = 2a/3, cosa = 1/2; when
m = 1 then ¢ = 2w2/33 = a, cosa = 1, we choose
cosa = (1 + m?)/2. And notice that when both m = 0
and m = 1, there all exists w; = wg/Q and a; = a. Hence

2 4+ m?2)w? 2 4+ m?
¢1 _ ( ) 0 _ a,
203 3
Sw?
A= 41+ m?). (105)
Wo

Equation (103) is just a Lamé equation (22) for the
case of [ = 3. According to the theory of Lamé equa-
tion (see Appendix for details), we obtain the modes and
fluctuating periodic instantons of Eq. (103) given by

(a) A =4(1+m?) ie. 8w?/wg +4(1+m?) = 4(1 +m?
and then

w?=0, (zeromode), 1y = Cosnfcnfdnf. (106)
(b) A = 5(1 + m?) £ 2v4 — Tm2 + 4m? i.e. 8w?/wd +

4(1 +m?) = 5(1 +m?) £ 2v4 — Tm?2 + 4m?* and then

w? = 20[(1 + m?) + 2Dy],

(&)

(all modes),

(ii) Fluctuating Periodic Instanton 8
In order to solve the fluctuating equation (4), it is con- 2(1+m?) £+ D;
venient to introduce the following dimensionless variable 1 = Cysnf|1— 3 s 9} ’ (107)
0 :wl(’T—To), (100) with D1 = \/4—7m2+4m4.
c) A =2m? + 5424 —m2 +m?*ie 8w?/w? +4(1 +m?) =2m? + 5+ 24 — m?2 + m* and then
0
2
w? = %[(1 —2m?) £ 2D,], (all modes), 1y = Cocnf[l — (2 4+ m? £ 2Dy)sn?0] (108)
with Dy = V4 — m2 + m#.
(d) A =5m? +2+2V1 —m? +4m? ie. 8w? /w3 + 4(1 +m?) = 5m? + 2 £ 2¢/1 — m2 4+ 4m* and then
2
2 %[( —2)£2D;], (all modes), 3= Csdnd[l — (1+2m?2 + Ds)sn0], (109)

V1 —m?2 4+ 4m*.

4 Conclusion and Discussion

There are many mathematical problems in specific
physics fields, for the quantum tunneling, it is of great
importance to solve analytically the related model under
different potential fields. Here we show that the special

! functions are really helpful to reach this aim. The basic in-

stantons satisfy the elliptic or simple pendulum equations
and their solutions are Jacobi elliptic functions, and fluc-
tuating periodic instantons satisfy the Lamé equation and
their solutions are Lamé functions. These results indicate
that there exists the common solution family for different
potential fields, which are called the super-symmetry fam-
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ily. At the same time, these analytical solutions and their y =cn(z,m), (A=1); y=dn(z,m), (A =m?).(A3)
features te.ll us Why and how the quantum tunneling has (ii) In case of I = 2, Lamé equation (A1) reduces to
happened in specific models. 22
) 2.2 _
Appendix a2t (A —6mZsn“z)y =0, (A4)
The Lamé equation is defined as with its eigenvalue and eigenfunction given by
d2
7y + [)\ — l(l + l)mQSnzx]y = O7 (Al) Y= cn(m, m)dn(m, m)7 <)\ =1+ m2) ’ (A5>
da? 2
y =sn(x,m)dn(z,m), (A=1+4m?), (A6)
where [ is a positive integer, m (0 < m < 1) is the mod- . N4 9 A7
ulus, A is the eigenvalue, which satisfies the periodicity y = sn(z,mjen(z,m), (A=4+m?), (A7)
boundary condition, and the corresponding eigenfunction 2 1+m? FvV1—m?+m?
: . ) y =sn"(z,m) — ;
is known as the Lamé function. 3m?2
. (i) In case of [ = 1, Lamé equation Eq. (Al) reduces (0= 2[(1+m2) £ V1—m? +mi)) . (A8)
d2 _ .
TZ (A —2mPsn’a)y = 0, (A2) (iii) In case of | = 3, Lam eequation (A1) reduces to
xZ d2y 5 o
with its eigenvalue and eigenfunction given by dz? + (A= 12msnz)y =0, (A9)
y=sn(z,m), (A=1+m?); | with its eigenvalue and eigenfunction given by
y = sn(z,m)en(x, m)dn(xz,m), (\=4(1+m?), (A10)
2(1 D+ V4 - 2 4+ 4mA
y = sn(z,m) [1 _2+mY) 3 Tm?” + 4m sn2(x,m)} , (A11)
with A = 5(1 + m?) + 2v/4 — Tm? + 4m*.
y =cn(z,m)[l — (m? +2+2v4 —m2+mb)sn?(z,m)], (A=5+2m?+2/4—m2+m4), (A12)
y =dn(z,m)[l — (2m? + 1+ /1 —m?2 4 4m*)sn?(z,m (A =5m? + 24 2v/1 —m2 + 4m4). (A13)
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